Journal of Ethnicity in Criminal Justice
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/wecj20

Searches
George E. Higgins a, Gennaro F. Vito a & William F. Walsh a
a University of Louisville, USA
Published online: 11 Oct 2008.

To cite this article: George E. Higgins , Gennaro F. Vito & William F. Walsh (2008): Searches, Journal of Ethnicity in Criminal Justice, 6:1, 23-39
To link to this article: http://dx.doi.org/10.1300/J222v06n01_03

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions
This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
Searches:
An Understudied Area
of Racial Profiling

George E. Higgins
Gennaro F. Vito
William F. Walsh

ABSTRACT. Racial profiling is an important issue in contemporary policing. Racial profiling research has primarily involved two things: (1) examining traffic stop data, and (2) using a benchmark or baseline in the discovery of racial profiling. A smaller literature has examined the searches to uncover racial profiling. The purpose of the present study is to examine traffic stop data—in particular searches—in understanding racial profiling. Using data more than 40,000 traffic stops from Louisville, Kentucky, the present study found that race is one of many factors that are used in the determination of a search. The policy implications of this finding are discussed. doi:10.1300/J222v06n01_03 [Article copies available for a fee from The Haworth Document Delivery Service: 1-800-HAWORTH. E-mail address: <docdelivery@haworthpress.com> Website: <http://www.HaworthPress.com> © 2008 by The Haworth Press. All rights reserved.]

KEYWORDS. Searches, race, and racial profiling

An important issue in contemporary policing is race. In particular, the main issue is the role that race plays in the decisions of police offi-
cers and police departments. This is not a new issue for policing, crimi-
nal justice, or American society. Racial disparities in the American
criminal justice system have been of interest for researchers, legislators
and society due to the documented disproportionate numbers of racial
and ethnic minorities at every stage of the criminal justice process
(Walker, Spohn, & Delone, 2000; Gabbidon & Greene, 2005). In partic-
ular, police departments have been sharply criticized for the response to
or service to the minority community since the post-civil-rights era
(Gabbidon & Greene, 2005).

Recently, the response to minorities in many communities has come
under scrutiny, especially in the context of racial profiling. Racial pro-
filing has several different definitions that are based on individual per-
ception that muddle the understanding of the issue. For instance,
Withrow (2006) argued that profiling is the use of a combination of
physical, behavioral or psychological factors that, after being subjected
to careful analysis improve the probability of identifying and appre-
hending a suspect. While this is a general definition it has a positive
tone. Others are not so positive in tone when defining racial profiling.
For example, Meehan and Ponder (2002) defined profiling as police offi-
cers stopping and citing a disproportionate number of minorities. Some
scholars defined racial profiling as including specific targeting of minori-
ties for unwarranted stops or any police initiated action that relies on race,
ethnicity, or national origin rather than a behavior (Tomaskovic-Devey,
Mason, & Zingraff, 2004; Ramirez, McDevitt, & Ferrell, 2000). While
these definitions are more negative in tone, they do not provide a sub-
stantial amount of clarity about racial profiling because they do not
make it clear if the officers’ behavior is mandated by the police depart-
ment or is a reflection of their own bias. For the present study, while not
clarifying the role of the police department or the officer, racial profil-
ing is the practice of making law enforcement decisions based on race or
ethnicity. Our definition encompasses McDonald’s (2001) view of hard
profiling (race is used as the only factor in a police officers’ deci-
sion-making) and soft profiling (when race is only one factor used in a
police officers’ decision-making).

To date, some study of racial profiling has taken place, but they are
limited. These studies indicate that racial and ethnic minorities are dis-
proportionately stopped and searched. However, despite the belief that
racial profiling takes place, the literature is lacking a clear understand-
ing of its occurrence. The clear understanding may be due to several
limitations. First, until recently, little data had been specifically col-
lected to detect and understand racial profiling. Second, the current lit-
erature has not been successful in controlling for important confounds such as pretext stops, warrant check, reliance on descriptive statistics, and not progressing beyond the traffic stop to understand racial profiling. As a result, the knowledge base on racial profiling is limited in the empirical literature.

The purpose of the present study is to contribute to the literature on racial profiling in two ways. First, this study discusses methodological and conceptual issues concerning racial profiling studies. In particular, this study will discuss the limitations of benchmarks, baselines, and pretext stops in understanding racial profiling. Second, this study extends the present literature on using searches in understanding racial profiling. This will avoid the problems of using benchmarks or baselines. The implications of this study are significant because of the potential policies that may be developed.

METHODODOLOGICAL ISSUES

Researchers and organizations (i.e., police departments, advocacy groups, and legislators) have attempted to understand racial profiling. State mandates have been the largest impetus for collecting data that will allow for an understanding of racial profiling. These data collection efforts have included several variables (i.e., driver characteristics, situational factors, searches made and their circumstances, and sanctioning decisions). These data were generally collected to determine if racial profiling has indeed taken place. However, the analysis of these data has been challenging. The challenge has occurred because researchers have been occupied attempting to develop a fraction in understanding their data. The fraction would place the recorded traffic stops in the numerator and a baseline or benchmark as the denominator (Walker, 2001). Thus, three potential outcomes are possible. First, the racial composition in the numerator is the same as the denominator then no racial profiling has taken place. Second, if the racial composition in the numerator was smaller than the denominator then no racial profiling had taken place. Third, if the racial composition of numerator was greater than the denominator then racial profiling had taken place. While this seems simple, to date, there has not been any consensus on the proper baseline or benchmark among practitioners or among academics. Therefore, the fraction approach is limited due to benchmarks or baselines.

The challenge of using a baselines or benchmarks is present for two reasons. First, as mentioned above, the definition of racial profiling is
rather ambiguous. The ambiguity of the definition does not allow researchers to operationally define racial profiling making the use of a benchmark or a baseline almost impossible. Second, the validity and reliability of the benchmarks or baselines is debatable given geography and legislative mandate. For instance, Gaines (2006) defined racial profiling using the California legal statute and the census as a baseline or benchmark. His findings revealed that the benchmark behaved erratically depending on the covariates used in his statistical models. Thus, his findings, using the census as a baseline or benchmark, may not be generalizable to other locations. Thus, research on racial profiling may benefit from understanding police officer decisions in official interventions (e.g., searches).

An important part of the racial profiling controversy comes from the use of pretextual traffic stops (Harris, 1999; Withrow, 2006). These stops occur because the officer is suspicious of the driver or has some type of preexisting knowledge of the driver. For instance, an officer may see a vehicle because he or she suspects that the vehicle is transporting some sort of contraband, or the officer has knowledge that the driver is a member of a gang. After seeing the vehicle, the officer then needs to make several different decisions that were mentioned above (i.e., decide to stop the vehicle; decide whether to search the vehicle; and decide on a sanction [warning, citation, or arrest]). Therefore, the traffic stop or search may be due to some extralegal factor (e.g., preexisting knowledge of gang membership or city residency) other than the legal rational (e.g., a legitimate equipment violation or hit on a warrant check).

REVIEW OF RELEVANT LITERATURE CONCERNING POLICE DECISIONS TO SEARCH

The role of race is an important factor in police decisions, but this is only one extralegal factor that influences police officers’ decisions in specific situations (Withrow, 2006). In the current racial profiling literature, the focus has been on the race of the driver during a traffic stop. Schafer et al. (2006) noted that the lack of clarity in the definition of racial profiling makes the results from these studies limited and suggest that researchers investigate other areas of police decision-making to better understand racial profiling. That is, Schafer et al. (2006) argued that researchers should capitalize on the vast amount of information that has been collected during a traffic stop to better understand racial profil-
ing. Thus, the review of the literature that follows will examines the studies that used search in racial profiling studies.

Importantly, searches of vehicles are relatively rare. Some have noted that searches only occur in 1 to 8 percent of all traffic stops (Cordner, Williams, Zuniga, 2000; Schmitt, Langan, & Durose, 2002; Smith & Petrocelli, 2001). However, when searches do take place, they are disproportionately high for African-Americans and Hispanics when compared to white drivers, but these findings have not been cast in the context of the racial profiling literature (Cordner et al., 2000; Cox et al., 2001; Decker & Rojek, 2000; Spitzer, 1999; Nixon, 2001).

Police officers have the legal authority to search in at least six different situations. First, a police officer has the authority to search incident to an arrest. That is, when an officer is making an arrest, he or she has the lawful authority to search the vehicle’s driver. Second, a police officer has the authority to search during a tow inventory—to account for property located in the vehicle. Third, officers have the authority to search when contraband is in plain view (e.g., narcotics are in the backseat of a vehicle). Fourth, officers have the authority to search when a vehicle’s driver gives consent. Fifth, officers can search when they have reasonable suspicion or probable cause that the individual is in possession of contraband (i.e., Terry search). Sixth, officers have the legal authority to search when they have a hit on a warrant check. Given the legal authority to search, does not always translate in to the activity taking place nor does it translate in to productive searches.

While several researchers have pointed out disparities in searches, few studies have examined searches in the context of racial profiling. For instance, Decker and Rojek (2002) showed that African-Americans were more likely to be searched incident to an arrest compared to whites. Cox et al. (2001) showed that young male drivers across all races were more likely to be searched than other drivers. Schafer et al. (2006) found disparate effects in searches when legal authority was included in their study. Further, Schafer et al. (2006) found that race was only one of two other extralegal factors (i.e., gender and age) that contributed to a police officers’ decision to search. Finally, Schafer et al. (2006) showed that race and ethnicity were not important in influencing the production of a search. Thus, searches may be an important area that may reveal racial profiling. To date, the racial profiling literature has not considered other variables when examining searches. For example, no study in the racial profiling literature has examined the role of city residency, preexisting knowledge, or hit on a warrant check. Therefore,
the literature can be improved by understanding the role of these variables in the racial profiling literature for searches.

PRESENT STUDY

The purpose of the present study is to examine traffic stop data using those searched and not searched rather than the traffic stop to understand racial profiling. Given that most research in the racial profiling literature has examined traffic stops exclusively, the present study advances the literature by focusing on the search that has taken place. In the present study, it is expected that African-Americans and males will be searched more than whites or females. Further, we expect that this will occur when the officer has the legal authority (i.e., hit on a warrant check) to conduct the search.

The present study is significant in three ways. First, the present study allows researchers to view a separate portion of decision-making process to try to understand racial profiling. Second, the present study extends the present understanding of racial profiling that uses searches rather than traffic stops. Third, the findings from the present study will provide researchers information to develop policy to reduce instances of racial profiling.

METHOD

To address these issues of the present study, this analysis examines traffic stop data collected by one metropolitan police department (i.e., Louisville, KY) for the period January 1, 2002 to December 31, 2002. In December 2000, this department adopted a policy strictly prohibiting the practice of profiling. The policy includes a definition of profiling, procedures for collecting data during traffic stops, supervisor responsibilities, training, reporting, and disciplinary procedures. According to the policy, profiling is defined as:

The targeting of people based solely on their race, ethnicity, gender, sexual-orientation, religion, socioeconomic status, or disability; or a process that motivates the initiation of a traffic stop, detention, and/or other law enforcement activity based solely on an individual’s actual or perceived race, ethnicity, gender, sexual orientation, religion, socio-economic status, or disability, or other
characteristics attributed to an individual as a member of such group; or making discretionary decisions during the course of an enforcement activity based upon race, ethnicity, gender, sexual orientation, religion, socio-economic status, or other characteristics attributed to an individual as a member of such group.

In conjunction with this policy, the department decided to collect traffic stop data to monitor compliance with policy.

Data Collection and Sample

Data were collected using a two-sided scantron form. The forms were completed by individual officers who made the traffic stop and were reviewed by their supervisors. Once the district supervisors completed their reviews, the forms were forwarded to staff services for additional review for completeness and accuracy. Forms that contained errors or incomplete information were returned to the district for corrections. The data from the scantron forms were scanned directly into a database. The database file was then converted to the Statistical Package for Social Science (SPSS) 14.0. Forms that contained incomplete or incorrect data, as well as forms that were rejected, were returned to the department for further processing.

The complete sample resulted in more than 36,000 observations (N = 36,880). In the entire sample, 18.3 percent of the drivers were searched. However, black drivers were much more likely to be searched (26.5%) than white drivers (14.9%).

Our analysis focuses upon only those individuals that had been searched. The size of the subgroup of searched drivers was 6744 (18.3%) This is the group that will be examined in a direct utilization of the outcome test that Ayers (2002) advocates.

Independent Variables

The majority of our variables are those used in previous racial profiling studies (Engle & Calnon, 2004; Novak, 2004; Vito et al., 2005; Withrow, 2004a, b). However, some independent variables are specific to this study. First, 77 percent of the drivers searched were city residents (5,168/6713). Almost all of the drivers who were searched had a warrant check performed by police (6,601/6,740 = 97.9%). Where a warrant check was performed, 21.8% of the searched drivers had an outstanding warrant (1,441/6,601).
Measures

Several measures were used to better understand the role of race in the context of searches. The first independent variable covers the area of pretextual stops. That is, we used the residency of an individual (i.e., city resident). Next, we used a single item measure of an officers’ preexisting knowledge of the individual driver. These variables were dichotomous (i.e., 0 = no, 1 = yes). We also used the two measures of legal authority–equipment violation and hit on the warrant check. These data were coded (0 = no, 1 = yes). Finally, we used characteristics of the driver as independent variables (i.e., sex [0 = female, 1 = 1], race [0 = white, 1 = African-American], and age of the driver.

Dependent Variable: Search

To extend the literature that examines searches to understand racial profiling, we used searched as the dependent variable. The variable was coded 0 = no and 1 = yes. With this variable, we are confident that we are capturing search as accurately as previous research.

ANALYSIS AND RESULTS

The analysis for this study has three stages. The first stage is the descriptive analysis. It presents the demographics of the drivers plus percentages and frequencies of the events that occur during the traffic stop. In the second stage, the bivariate analysis examines the level of association between the key measures in this study. Finally, the multivariate analysis utilizes binary logistic regression to demonstrate the effect of the measures on the decision to searches.

Stage 1: Descriptive Analysis of All Drivers Who Were Stopped

The following demographic information describes the character of the drivers who were pulled over. They were used as independent variables in the present study. The average age of the drivers stopped was 33 years old. White drivers accounted for about sixty-four percent of the traffic stops (N = 30,481). About seventy percent (N = 33,675) of the drivers stopped were male. The majority of the drivers stopped were city residents (63.4 percent–N = 30,088). In nearly three percent (2.8 percent) of the stops (N = 1,350), the officers listed “preexisting knowledge” as the reason for the stop. Officers were asked if they knew some-
thing about the driver or vehicle they had stopped. They may have had some previous experience with the driver and/or the vehicle. For example, the vehicle may have been listed as stolen or the officer may have cited that vehicle for an equipment violation. Almost twenty percent (19.5 percent) of the traffic stops (n = 9,457) made for an equipment violation. This variable was singled out for analysis because authors such as Novak (2004) have suggested that the potential for abuse of police discretionary authority is highest in these instances.

In terms of the procedures followed after the stop was made, officers conducted a warrant check in about seventy-eight percent of the traffic stops (N = 37,394). Approximately five percent of these warrant checks (1,853/37,394) resulted in a “hit.” Officers were expected to conduct a warrant check whenever they stopped a vehicle. About seventeen percent of the traffic stops (N = 7,846) resulted in a search.

Stage 2: Bivariate Analysis

Table 1 presents an analysis of the variables related to the probability of a search being conducted during a traffic stop. While all of the following variables had a statistically significant relationship to the search probability, they are presented in order of their magnitude as indicated by the value of Cramer’s V. Thus, persons were more likely to be searched during a traffic stop if:

- The officers had pre-existing knowledge about the driver or the vehicle. Over sixty-two percent of cases where the police had this knowledge were searched.
- They were male (about twenty-one percent).
- If they were Black (over twenty-two percent).
- If they were city residents (almost twenty percent).
- If they DID NOT have an Equipment/registration violation (seventeen percent).

In order to determine if these variables were related to each other in combination and if race was a significant factor after the other independent variables were accounted for, a multivariate analysis was conducted.

Stage 3: Multivariate Analysis with Logistic Regression

Table 2 uses the decision to conduct a search as a dependent variable. The following variables predicted who was more likely to be searched
following a traffic stop. In this analysis, city residents were more likely than non-city residents to be searched (1.697). Drivers that were male were 3.218 times more likely to be searched than female drivers. Further, a hit on a warrant check increased the likelihood that a search would take place by 3.218 times. Importantly, black drivers were 1.280 times more likely to be searched than drivers of other races. This supports the view that race is important in searches. Further, preexisting knowledge increased the likelihood of a driver being searched. Finally, the age of the driver was not a primary factor in the officer’s decision to search. Overall, these findings support our expectation that African-Americans, males, city residents, and an officers’ preexisting knowledge are more likely to be searched.

Table 3 presents the analysis of the logistic regression analysis split by the warrant check variable categories (Hit and No Hit). A city resi-

TABLE 1. Bivariate Analysis–Variables Related to Probability of Search

<table>
<thead>
<tr>
<th>Pre-existing Knowledge</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>834 (62.3%)</td>
<td>7,012 (15.2%)</td>
</tr>
<tr>
<td>No</td>
<td>505 (37.7%)</td>
<td>39,262 (84.8%)</td>
</tr>
<tr>
<td>Total</td>
<td>1,339</td>
<td>46,274</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gender</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>6,826 (20.6%)</td>
<td>997 (7.0%)</td>
</tr>
<tr>
<td>No</td>
<td>26,380 (79.4%)</td>
<td>13,289 (93.0%)</td>
</tr>
<tr>
<td>Total</td>
<td>33,206</td>
<td>14,286</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Race</th>
<th>Black</th>
<th>White</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>3,487 (22.4%)</td>
<td>4,042 (13.5%)</td>
</tr>
<tr>
<td>No</td>
<td>12,104 (77.6%)</td>
<td>25,975 (86.5%)</td>
</tr>
<tr>
<td>Total</td>
<td>15,591</td>
<td>30,017</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City Resident</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>5,792 (19.4%)</td>
<td>2,009 (11.7%)</td>
</tr>
<tr>
<td>No</td>
<td>23,990 (80.6%)</td>
<td>15,152 (88.3%)</td>
</tr>
<tr>
<td>Total</td>
<td>29,782</td>
<td>17,161</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equipment/Registration Violation</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>1,339 (14.3%)</td>
<td>6,507 (17.0%)</td>
</tr>
<tr>
<td>No</td>
<td>8,045 (85.7%)</td>
<td>31,722 (83.0%)</td>
</tr>
<tr>
<td>Total</td>
<td>9,384</td>
<td>38,229</td>
</tr>
</tbody>
</table>

1 Chi-square value = 2100.45, Cramer’s V = .21, sign. = .000
2 Chi-square value = 1338.36, Cramer’s V = .17, sign. = .000
3 Chi-square value = 569.68, Cramer’s V = .11, sign. = .000
4 Chi-square value = 470.86, Cramer’s V = .10, sign. = .000
5 Chi-square value = 41.47, Cramer’s V = .03, sign. = .000
dent had a greater search probability for both groups (1.733 no hit and 1.061 hit) on the warrant check. A traffic stop for an equipment violation reduces the likelihood for a search for individuals without a hit on the warrant check, but increases the likelihood for individuals with a hit on the warrant check. Male driver had increased the likelihood for a search regardless if whether a hit (3.250) on the warrant check occurred or not (3.229). However, preexisting knowledge appears to show a substantively different likelihood of search for individuals without a hit on a warrant check (6.708) compared to those with a hit on the warrant check (3.998). Drivers’ age and being a black driver showed similar likelihoods of a search regardless of a hit on the warrant check compared to no hit on the warrant check.

We used the Paternoster, Brame, Mazerolle, and Piquero (1998) z-score technique to compare the unstandardized coefficients of the bi-

TABLE 2. Logistic Regression Analysis for Overall Sample

<table>
<thead>
<tr>
<th>Item</th>
<th>B</th>
<th>SE</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>City Resident</td>
<td>.529**</td>
<td>.033</td>
<td>1.697</td>
</tr>
<tr>
<td>Equipment Violation</td>
<td>-.319**</td>
<td>.039</td>
<td>.727</td>
</tr>
<tr>
<td>Male Driver</td>
<td>1.169**</td>
<td>.041</td>
<td>3.218</td>
</tr>
<tr>
<td>Warrant Hit</td>
<td>3.469**</td>
<td>.074</td>
<td>32.995</td>
</tr>
<tr>
<td>African-American Driver</td>
<td>.247**</td>
<td>.031</td>
<td>1.280</td>
</tr>
<tr>
<td>Preexisting Knowledge</td>
<td>1.893**</td>
<td>.068</td>
<td>6.640</td>
</tr>
<tr>
<td>Driver Age</td>
<td>-.024**</td>
<td>.001</td>
<td>.976</td>
</tr>
<tr>
<td>Constant</td>
<td>-2.286**</td>
<td>.060</td>
<td>.000</td>
</tr>
<tr>
<td>Model Chi-square</td>
<td>6941.37**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nagelkerke R-Square</td>
<td>.263</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N = 48586</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**p > .01
TABLE 3. Logistic Regression Analysis Split by Hit on Warrant Check

<table>
<thead>
<tr>
<th>Item</th>
<th>Not Hit on Warrant Check</th>
<th>Hit on Warrant Check</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>SE</td>
<td>Exp(B)</td>
</tr>
<tr>
<td>City Resident</td>
<td>.550**</td>
<td>.034</td>
<td>1.733</td>
</tr>
<tr>
<td>Equipment Violation</td>
<td>-.353**</td>
<td>.040</td>
<td>.703</td>
</tr>
<tr>
<td>Male Driver</td>
<td>1.172**</td>
<td>.042</td>
<td>3.229</td>
</tr>
<tr>
<td>Preexisting Knowledge</td>
<td>1.903**</td>
<td>.069</td>
<td>6.708</td>
</tr>
<tr>
<td>Driver Age</td>
<td>-.025**</td>
<td>.001</td>
<td>.975</td>
</tr>
<tr>
<td>African-American Driver</td>
<td>.251**</td>
<td>.032</td>
<td>1.285</td>
</tr>
<tr>
<td>Constant</td>
<td>-2.289**</td>
<td>.062</td>
<td>.101</td>
</tr>
<tr>
<td>Model chi-square</td>
<td>2770.456**</td>
<td>83.974**</td>
<td></td>
</tr>
<tr>
<td>Nagelkerke R-Square</td>
<td>.124</td>
<td>.083</td>
<td></td>
</tr>
<tr>
<td>N = 38544</td>
<td>N = 1853</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**p > .01
nary logistic regression. Interestingly, we did not find any of the measures that had statistically significant differences between the measures. This essentially means the warrant check fails to have a statistically significant effect on the likelihood of a search.

Table 4 presented further analysis on the link between the hit on the warrant check, and race while retaining the decision to search as a dependent variable. This analysis is accomplished by further splitting the data based on warrant check hit and race. Table 4 shows that for whites being a city resident (1.769), male driver (2.546), and the officers’ preexisting knowledge of the individual (8.089) increased the likelihood of a search during a traffic stop when there was not a hit on the warrant check. A traffic stop for an equipment violation (.615) and the driver’s age (.979) reduced the likelihood of a search during a traffic stop when there was not a hit on the warrant check.

Similar linkages were found for black drivers. City residents (1.640), Males (4.847), and the officers’ preexisting knowledge (5.507) increased the probability of a search. Like whites, a traffic stop for an equipment violation (.790) and driver’s age (.970) reduced the likelihood of a search.

Table 4 also showed that for whites (3.286) and blacks (3.315) being a male driver increased the likelihood of a search when there was a hit on the warrant check. Preexisting knowledge was an important factor the decision to search both for whites (3.484) and blacks (4.783). Interesting to note, for blacks (.981) driver age has a significant reduction in the likelihood of a search taking place when there was a hit on the warrant check.

Again, we compared these links using Paternoster et al.’s (1998) z-score for equal coefficients. The findings showed that regardless of a hit or not on the warrant check there was no statistically significant difference in the coefficients effect on the likelihood of a search for any of the variables. These findings temper the argument that a hit on the warrant check (less officer discretion) and racial bias drive the police officers’ decision to search. Thus, we believe that other factors influence the decision to search an individual during a traffic stop.

DISCUSSION

The purpose of this study was to use a different decision point for police officers (i.e., search) to understand racial profiling. This study was guide by two expectations. First, we expected that African-Americans
TABLE 4. Logistic Regression Analysis Split by Hit on Warrant Check and Race

<table>
<thead>
<tr>
<th>Item</th>
<th>Whites B</th>
<th>SE</th>
<th>Exp (B)</th>
<th>Not Hit on Warrant Check</th>
<th>African-Americans B</th>
<th>SE</th>
<th>Exp (B)</th>
<th>Z-score B</th>
<th>Whites B</th>
<th>SE</th>
<th>Exp (B)</th>
<th>Hit on Warrant Check</th>
<th>African-Americans B</th>
<th>SE</th>
<th>Exp (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>City Resident</td>
<td>0.570**</td>
<td>0.041</td>
<td>1.769</td>
<td>0.494**</td>
<td>0.067</td>
<td>1.640</td>
<td>0.165</td>
<td>0.072</td>
<td>0.216</td>
<td>1.074</td>
<td>0.039</td>
<td>0.309</td>
<td>0.899</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment Violation</td>
<td>-0.487**</td>
<td>0.058</td>
<td>0.615</td>
<td>-0.236**</td>
<td>0.057</td>
<td>0.790</td>
<td>-0.533</td>
<td>0.317</td>
<td>0.283</td>
<td>1.373</td>
<td>0.220</td>
<td>0.226</td>
<td>0.330</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male Driver</td>
<td>0.934**</td>
<td>0.052</td>
<td>2.546</td>
<td>-0.578**</td>
<td>0.077</td>
<td>4.847</td>
<td>-1.257</td>
<td>1.190**</td>
<td>0.218</td>
<td>3.286</td>
<td>1.198**</td>
<td>0.219</td>
<td>3.315</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preexisting Knowledge</td>
<td>2.091**</td>
<td>0.096</td>
<td>8.089</td>
<td>1.706**</td>
<td>0.100</td>
<td>5.507</td>
<td>0.615</td>
<td>1.248**</td>
<td>0.482</td>
<td>3.484</td>
<td>1.565**</td>
<td>0.600</td>
<td>4.783</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driver Age</td>
<td>-0.021**</td>
<td>0.002</td>
<td>0.979</td>
<td>-0.031**</td>
<td>0.002</td>
<td>0.970</td>
<td>0.111</td>
<td>-0.006</td>
<td>0.010</td>
<td>0.514</td>
<td>-0.019*</td>
<td>0.010</td>
<td>0.981</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-2.211**</td>
<td>0.076</td>
<td>0.110</td>
<td>-2.183**</td>
<td>0.115</td>
<td>0.113</td>
<td>0.864**</td>
<td>0.390</td>
<td>2.373</td>
<td>1.547**</td>
<td>0.427</td>
<td>4.699</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model chi-square</td>
<td>1.507/2.655**</td>
<td></td>
<td></td>
<td>12.57/6.85**</td>
<td></td>
<td></td>
<td>37.942**</td>
<td></td>
<td>42.362**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nagelkerke R-Square</td>
<td>0.098</td>
<td>N=24210</td>
<td>0.154</td>
<td>0.087</td>
<td>N=748</td>
<td>0.077</td>
<td>N=1047</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** p > .01
will be searched more than whites, and males will be searched more than females. We found conflicting evidence when examining our bivariate and multivariate analyses. In our bivariate analysis, were not able to support our hypotheses concerning African-Americans and males being searched more. This is a finding consistent with the literature on searches in racial profiling (Cox et al., 2001). However, in our multivariate analyses, we found that African-Americans and males had higher probabilities to be searched more than whites and females. These conflicting results indicate that the use of multivariate statistics is a necessity to understand racial profiling using traffic stop data, especially in the context of searches. Therefore, the remainder of the discussion will focus on the multivariate results.

Second, we expected that African-Americans and males will be searched more than whites and females when the police officer has the legal authority (i.e., hit on a warrant check). The legal authority is important in whether an individual is searched. In fact, this has the highest likelihood of a search. Thus, we may have an indication that searches occur because of more factors other than race. This is consistent with extent literature that used search to examine racial profiling (Cox et al., 2001; Schafer et al., 2006). Consistent with the extent literature, this means that the decision to search is not only fueled by race but several other factors. This dilutes the racial profiling argument using search as a method to understand racial profiling. However, our findings do not completely rule out the use of search because race is a variable that is important in the decision-making process.

To solidify the issues of the legal authority for racial profiling, we probed our findings by examining the moderation effects of legal authority and race. The results from these probes did not uncover any statistically significant differences for legal authority and race. This indicates that racial differences are not present for searches in the context of racial profiling. Therefore, we believe that our results are suggestive of the limited role of searches to help understand racial profiling.

Our findings do point to some policy implications. Because our initial multivariate analysis does suggest at least some racial difference in searches, we believe that the continuation of racial sensitivity training is a necessity in police academies and after graduating from police academies. We also believe that the continuation of the collection of racial profiling data will be pertinent in the reduction of issue. That is, the data collection keeps a watchful eye on police officers and their behavior.

While our findings are supportive of previous research and offer some policy implications, the study does have limits. One limit to this
study is that the data were cross-sectional. While longitudinal data will improve our understanding, the use of cross-sectional data for our purposes is the norm (Cox et al., 2001; Schafer et al., 2006). Another limit of our study is that it is confined to one region. While baseline and benchmarks are not proper for understanding racial profiling, the use of an additional region would be important in understanding racial profiling using searches. However, we are able to conclude that our findings are consistent with published studies that examine searches for racial profiling. Finally, our study is limited because it does not use a theory to organize and explain the data. We believe that theories such as an outcomes test would be important in understanding searches similar to Engel et al. (2002).

Despite the limits, the present study provides evidence that race is one of a few variables that have a link with searches. Specifically, the results indicate that race, legal authority (i.e., hit on a warrant check), preexisting knowledge, and city residency are factors that contribute to whether a vehicle is searched. Future studies that collect longitudinal data from multiple regions that apply the outcome test will be particularly useful in our understanding. For now, the present study supports the position that searches are not very fruitful in understanding racial profiling because multiple variables contribute to a search.

REFERENCES

Submitted: May, 2006
Resubmitted: October, 2006
Accepted: November, 2006
doi:10.1300/J222v06n01_03