
196 
 

© Taylor & Francis 

Chapter 11 

Factorial ANOVA 

 
 
 
 
 
 
 
 
11.1 Numerical and Visual Summary of the Data, Including Means Plots 

In order to inspect the data let’s look at the mean scores and standard deviations of the first 
story from the Obarow (2004) data (to follow along with me, import the Obarow.Story1.sav 
file as obarowStory1), which are found in Table 11.1. I used the numSummary() command 
to give me these descriptive statistics. 
 

numSummary(obarowStory1[,c("gnsc1.1", "gnsc1.2")], 
groups=obarowStory1$Treatment1, statistics=c("mean", "sd")) 
 
Table 11.1 Numerical Summary from Obarow (2004) Story 1 
 

Immediate Gains N Mean SD 

No pictures No music 15 .73 1.62 
 Music 15 .93 1.80 
Pictures No music 17 1.47 1.01 
 Music 17 1.29 1.72 
     

Delayed Gains N Mean SD 

No pictures No music 15 1.40 1.88 
 Music 14 1.64 1.50 
Pictures No music 17 1.53 2.12 
 Music 17 1.88 2.03 

 
Considering that there were 20 vocabulary words tested from the story, we can see from the 
gain scores that most children did not learn very many words in any of the conditions. 
Actually the least number of words that any children knew in the first story was 11, so there 
were not actually 20 words to learn for any children. Also, it appears that in every category 
gains were larger when considered in the delayed post-test (one week after the treatment) 
than in the immediate post-test (the day after treatment ended). The numerical summary also 
shows that standard deviations are quite large, in most cases larger than the mean. 
 
For the visual summary, since we are looking at group differences, boxplots would be an 
appropriate way of checking the distribution of data. Figure 11.1 shows boxplots of the four 
different groups, with the left side showing the immediate gain score and the right side 
showing the delayed gain score. 
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Figure 11.1 Boxplots of the Obarow Story 1 data. 
 
The boxplots show a number of outliers for two of the four groups, meaning that the 
assumption of normality is already violated. None of the boxplots looks exactly symmetric, 
and some distributions have extreme skewness. 
 
I’d like you to consider one more issue about the data in the obarowStory1 file. Notice 
which variables are factors (they show a count of the levels): 
 

summary(obarowStory1) 
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Notice that PicturesT1 is a factor, as is MusicT1. But so is Treatment1, which basically 
combines the factors of pictures and music. For my factorial ANOVA, if I want to see the 
effect of music and pictures separately, basically I’ll need to have these as separate factors. 
But in some cases I want to have just one factor that combines both of these elements, and 
that is why I created the Treatment1 factor as well. Make sure you have the factors whose 
interaction you want to check as separate factors in your data set. If you see a need later to 
combine them, as I did, you can create a new factor. 
 

11.1.1 Means Plots 

One type of graphic that is often given in ANOVA studies is a means plot. Although this 
graphic is useful for discerning trends in the data, it often provides only one piece of 
information per group—the mean. As a way of visualizing an interaction, means plots can be 
helpful, but they are graphically impoverished, since they lack much information. These 
types of plots will be appropriate only with two-way and higher ANOVAs (since a means 
plot with a one-way ANOVA would have only one line). 
 
In R Commander, open GRAPHS > PLOT OF MEANS. In the dialogue box I choose two factors 
(see Figure 11.2), one displaying whether the treatment contained music or not (MusicT1) 
and the other displaying whether the treatment contained pictures or not (PicturesT1). 
Choose the categorical variables in the ―Factors‖ box and the continuous dependent variable 
in the ―Response Variable‖ box. This choice results in the means plot in Figure 11.3. 
 

  
 
Figure 11.2 Creating a means plot in R Commander. 
 

Note that you have several 
options for displaying error bars 
in R. I chose 95% confidence 
intervals. 
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Figure 11.3 Means plot of first treatment in Obarow (2004) data with music and picture 
factors. 
 
Figure 11.3 shows that those who saw pictures overall did better (the dotted line is higher 
than the straight line at all times). However, there does at least seem to be a trend toward 
interaction, because when music was present this was helpful for those who saw no pictures, 
while it seemed to be detrimental for those who saw pictures. We’ll see in the later analysis, 
however, that this trend does not hold statistically, and we can note that the difference 
between the mean of pictures with no music (about 1.5) and the mean of pictures with music 
(about 1.3) is not a very large difference. Our graph makes this difference look larger. If the 
scale of your graph is small enough, the lines may not look parallel, but when you pull back 
to a larger scale that difference can fade away. Visually, no interaction would be shown by 
parallel lines, meaning that the effects of pictures were the same whether music was present 
or not. 
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Notice also that, because confidence intervals around the mean are included, the means plot 
has enriched information beyond just the means of each group. The fact that the confidence 
intervals overlap can be a clue that there may not be a statistical difference between groups as 
well, since the intervals overlap. 
 
The R code for this plot is: 
 

plotMeans(obarowStory1$gnsc1.1, obarowStory1$MusicT1, 
 obarowStory1$PicturesT1, error.bars="conf.int") 
plotMeans(DepVar, factor 
1, factor 2) 

Returns a means plot with one dependent and one 
or two independent variables. 

obarow$gnsc1.1 The response, or dependent variable. 

obarow$MusicT1, 
obarow$PicturesT1 

The factor, or independent variables. 

error.bars="conf.int" Plots error bars for the 95% confidence interval 
on the means plot; other choices include "sd" for 
standard deviation, "se" for standard error, and 
"none". 

 
The command interaction.plot() can also be used but is a bit trickier, because usually you 
will need to reorder your data in order to run this command. Nevertheless, if you want to plot 
more than one dependent variable at a time, you could use interaction.plot in R (see the 
visual summary document for Chapter 12, ―Repeated-Measures ANOVA,‖ for an example of 
how to do this). 
 
One problem you might run into when creating a means plot is that the factors levels are not 
in the order or set-up you want for the graph you want. With the Obarow data this wasn’t an 
issue, as there were several choices for factors (the Treatment1 factor coded for four 
different conditions, while the MusicT1 coded just for ±Music and the PicturesT1 coded 
just for ±Pictures). If I had used the Treatment1 factor, which contains all four experimental 
conditions, I would have gotten the graph in Figure 11.4. 
 



201 
 

© Taylor & Francis 

 
 
Figure 11.4 Means plot of first treatment in Obarow (2004) data with experimental factor. 
 
Figure 11.4 is not as useful as Figure 11.3, because it doesn’t show any interaction between 
the factors, so I wouldn’t recommend using a means plot in this way. However, I will use this 
example of a factor with four levels to illustrate how to change the order of the factors. You 
can change the order of factors through the ordered() command. First, see what the order of 
factor levels is and the exact names by listing the variable: 
 

obarowStory1$Treatment1 
4 Levels: −M−P −M+P +M−P +M+P 
(note that −M means ―No Music‖ and −P means ―No Pictures‖) 
 
Next, specify the order you want the levels to be in: 
 

obarowStory1$Treatment1=ordered(obarowStory1$Treatment1, levels= 
c("-M+P", "+M+P", "+M-P", "-M-P")) 
 
Now run the means plot again. 
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Figure 11.5 Obarow (2004) means plot with rearranged factors. 
 
The result, shown in Figure 11.5, is rearranged groups showing a progression from highest 
number of vocabulary words learned to the lowest. Note that this works fine for creating a 
graph, but you will want to avoid using ordered factors in your ANOVA analysis. The reason 
is that, if factors are ordered, the results in R cannot be interpreted in the way I discuss in this 
chapter. 
 

 
 
11.2 Putting Data in the Correct Format for a Factorial ANOVA 
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Creating a Means Plot in R 
 
From the R Commander drop-down menu, open GRAPHS > PLOT OF MEANS. Pick one or 
two independent variables from the ―Factors‖ box and one dependent variable from the 
―Response Variable‖ box. Decide what kind of error bars you’d like. 
 
The simple command for this graph in R is: 
 

plotMeans(obarowStory1$gnsc1.1, obarowStory1$MusicT1, 
 obarowStory1$PicturesT1, error.bars="conf.int") 
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The Obarow data set provides a good example of the kind of manipulations one might need to 
perform to put the data into the correct format for an ANOVA. A condensation of Obarow’s 
original data set is shown in Figure 11.6. 
 
It can be seen in Figure 11.6 that Obarow had coded students for gender, grade level, reading 
level (this was a number from 1 to 3 given to them by their teachers), and then treatment 
group for the particular story. Obarow then recorded their score on the pre-test, as it was 
important to see how many of the 20 targeted words in the story the children already knew. 
As can be seen in the pre-test columns, most of the children already knew a large number of 
the words. Their scores on the same vocabulary test were recorded after they heard the story 
three times (immediate post-test) and then again one week later (delayed post-test). The 
vocabulary test was a four-item multiple choice format. 
 

 
 
Figure 11.6 The original form of Obarow’s data. 
 
The format found here makes perfect sense for entering the data, but it is not the form we 
need in order to conduct the ANOVA. First of all, we want to look at gain scores, so we will 
need to calculate a new variable from the pre-test and post-test columns. In R Commander we 
can do this by using DATA > MANAGE VARIABLES IN ACTIVE DATA SET > COMPUTE NEW 

VARIABLE (note that I will not walk you through these steps here, but you can look at the 
online document ―Understanding the R environment.Manipulating Variables_Advanced 
Topic‖ for more information on the topic). 
 
Then there is an issue we should think about before we start to rearrange the data. Although 
the vocabulary words were chosen to be unfamiliar to this age of children, there were some 
children who achieved a perfect score on the pre-test. Children with such high scores will 
clearly not be able to achieve any gains on a post-test. Therefore, it is worth considering 
whether there should be a cut-off point for children with certain scores on the pre-test. 
Obarow herself did not do this, but it seems to me that, unless the children scored about a 17 
or below, there is really not much room for them to improve their vocabulary in any case. 
With such a cut-off level, for the first story there are still 64 cases out of an original 81, 
which is still quite a respectable size. 
 
To cut out some rows in R, the simplest way is really to use the R Console: 
 

new.obarow <- subset(obarow, subset=PRETEST1<18) 
 
The next thing to rearrange in the original data file is the coding of the independent variables. 
Because music and pictures are going to be two separate independent variables, we will need 
two columns, one coded for the inclusion of music and one coded for the inclusion of 
illustrations in the treatment. The way Obarow originally coded the data, trtmnt1, was coded 
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as 1, 2, 3, or 4, which referred to different configurations of music and pictures. Using this 
column as it is, we would be able to conduct a one-way ANOVA (with trtmnt1 as the IV), 
but we would not then be able to test for the presence of interaction between music and 
pictures. In order to have two separate factors, I could recode this in R like this for the music 
factor (and then also create a picture factor): 
 

obarow$MusicT1 <- recode(obarow$trtmnt1, '1="no music"; 2="no music"; 3="yes 
music"; 4="yes music"; ', as.factor.result=TRUE) 
 
After all of this manipulation, I am ready to get to work on my ANOVA analysis! If you are 
following along with me, we are going to use the SPSS file Obarow.Story1, imported as 
obarowStory1. Notice in Figure 11.7 that I now have a gain score (gnsc1.1), and two 
columns coding for the presence of music (MusicT1) and pictures (PicturesT1). There are 
only 64 rows of data, since I excluded any participants whose pre-test score was 18 or above. 
 

 
 
Figure 11.7 The ―long form‖ of Obarow’s data. 
 

11.3 Performing a Factorial ANOVA 

11.3.1 Performing a Factorial ANOVA Using R Commander 

To replicate the type of full factorial ANOVA done in most commercial statistics programs, 
you can use a factorial ANOVA command in R Commander. Choose STATISTICS > MEANS > 

MULTI-WAY ANOVA, as seen in Figure 11.8. 
 

 
 
Figure 11.8 Conducting a three-way ANOVA in R Commander. 
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With the Obarow (2004) data set I am testing the effect of three independent variables 
(gender, presence of music, and presence of pictures), which I choose from the Factors box. 
The response variable I will use is the gain score for the immediate pre-test (gnsc1.1). 
 
The R Commander output will give an ANOVA table for the full factorial model, which 
includes all main effects and all interaction effects: 
 
y=Gender + Music + Pictures + Gender*Music + Gender*Pictures + Music*Pictures + 
Gender*Music*Pictures 
 
where ―*‖ means an interaction. 
 

 
 
Any effects which are statistical at the .05 level or lower are noted with asterisks. Here we 
see on the first line that the main effect of gender is statistical (F1,56=4.35, p=.04). In other 
words, separating the numbers strictly by gender and not looking at any other factor, there is 
a difference between how males and females performed on the task. 
 
Main effects may not be of much interest if any of the interaction effects are statistical, since 
if we knew that, for example, the three-way interaction were statistical, this would tell us that 
males and females performed differently depending on whether music was present and 
depending on whether pictures were present. In that case, our interest would be in how all 
three factors together affected scores, and we wouldn’t really care about just the plain 
difference between males and females. However, for this data there are no interaction effects. 
 
The last line, which is called Residuals, is the error line. This part is called error because it 
contains all of the variation we can’t account for by the other terms of our equation. Thus, if 
the sum of squares for the error line is large relative to the sum of squares for the other terms 
(which it is here), this shows that the model does not account for very much of the variation. 
 
Notice that the numbers you can obtain here may be different from the identical analysis run 
in a different statistical program such as SPSS. This is because R is using Type II sums of 
squares (and this is identified clearly in the output), while SPSS or other statistical programs 
may use Type III sums of squares (for more information on this topic, see section 11.4.3 of 
the SPSS book, A Guide to Doing Statistics in Second Language Research Using SPSS, pp. 
311–313). 
 
If you need to calculate mean squares (possibly because you are calculating effect sizes that 
ask for mean squares), these can be calculated by using the sums of squares and degrees of 
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freedom given in the R Commander output. The mean square of any row is equal to the sum 
of squares divided by the df of the row. Thus, the mean square of Gender is 9.99/1=9.99. 
 
The next part of the output from R Commander gives descriptive statistics (mean, sd, and 
count) for the permutation of the independent variables in the order they are placed in the 
regression. The first three lines of the ANOVA table above show the order in which the 
variables were placed: gender, then music, and then pictures. The last variable placed in the 
equation is Pictures, so the descriptive statistics show the number of vocabulary items used 
when, first of all, pictures are present versus absent, and splits that data up into variables of 
gender and music. The following output shows the mean scores for this situation: 
 

 
 
If this wasn’t the organization of the data that you wanted, you could just change the order of 
the factors in your ANOVA model (by hand in R, since there is no way to change the order in 
R Commander). 
 
In reporting on a factorial ANOVA you will want to report descriptive statistics (which R 
Commander output gives, as shown here), information about each main effect and interaction 
in your model (shown in the ANOVA table), effect sizes for factors, and the overall effect 
size of multiple R

2
. 

 
The partial eta-squared effect size for main effects and interactions (if all of the factors are 

fixed, not random) can be calculated by using the formula 
erroreffect

effect

partial
SSSS

SS
2ˆ where 

SS=sum of squares. For the case of the main effect of gender, then partial eta-
squared=9.99/(9.99+128.601)=.072. 
 
The multiple R squared is not found in the output that R Commander calls for. You can 
obtain it by doing a summary of the linear model that R Commander constructs. Here the 
model was automatically labeled as AnovaModel.6, as seen in Figure 11.8. 
 

summary(AnovaModel.6)) 
 
[output cut here] 
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The summary first provides coefficient estimates for the default level of the factors compared 
to the other factors. The last three lines of the regression output are shown above. The first 
line, which is labeled ―Residual standard error,‖ is the square root of the error variance from 
the ANOVA table above (128.601) with the error degrees of freedom. We want this number 
to be as small as possible, for this is the part of the data that we can’t explain. The second line 
gives the overall effect size for the full factorial regression, while the adjusted R squared 
gives the same thing but adjusted for positive bias. So this full factorial model accounts for 
15% of the variance in scores or, adjusting for bias, the full model accounts for only 4.2% of 
the variance. The third line is a model that is rarely of interest, but it tests the hypothesis that 
―performance is a function of the full set of effects (the main effects and the interactions)‖ 
(Howell, 2002, p. 464). 
 

 

11.3.2 Performing a Factorial ANOVA Using R 

The code for the full factorial performed by R Commander was clearly apparent in the 
previous section. What I will demonstrate in this section is how to perform an ANOVA 
where we will not try to fit the (one) model to the data, but instead fit the data to the model by 
searching for the best fit of the data. This procedure is identical to what was seen in the 
section on Regression (in the online documents ―Multiple Regression.Finding the best fit‖ 
and ―Multiple Regression.Further steps in finding the best fit‖), since ANOVA in R is 
modeled as a regression equation, and then commands like Anova() reformat the results into 
an ANOVA table. 
 
As with regression, it makes more sense to find the minimally adequate model for the data 
and only later examine plots which evaluate the suitability of assumptions such as 
homogeneity of variances, normality of distribution, etc. I will assume that my reader has 
already looked at the section on finding the minimally adequate model in the online 
document ―Multiple Regression.Finding the best fit,‖ but, as a review, the steps I will follow 
to find the minimally adequate model are (following Crawley, 2007): 
 

1. Create a full factorial model. 
2. Examine the output for statistical terms. 
3. Create a new model that deletes unstatistical entries, beginning with largest terms first 

and working backwards to simpler terms. 
4. Compare the two models, and retain the new, simpler model if it does not cause a 

statistical increase in deviance. 
 

Conducting a Factorial ANOVA Using R Commander 
 
1. STATISTICS > MEANS > MULTI-WAY ANOVA. 
 
2. Choose your independent variables under the ―Factors (pick one or more)‖ box on the left. 
Highlight more than one by holding down your Ctrl button while you left-click the factors. 
Choose a dependent variable in the ―Response Variable (pick one)‖ box. Click OK. 
 
3. To obtain R

2
 and adjusted R

2
, take the ANOVA model that R Commander creates and run a 

summary on it: 
 

summary(AnovaModel) 
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Using the Obarow (2004) data contained in Obarow.Story.1 (imported as obarow into R), I 
will first create the full factorial model. Remember that, instead of writing out the entire 
seven-parameter model (with 1 three-way interaction, 3 two-way interactions, and 3 main 
effects), using the asterisk (*) notation creates the full model. 
 

attach(obarow) 
model=aov(gnsc1.1~gender*MusicT1*PicturesT1) 
summary(model) 
 
The summary() command produces an ANOVA table, as was seen above in the previous 
section with R Commander. This summary shows that there is only one statistical entry, the 
main effect of gender. The choice of aov() instead of lm() for the regression model means 
that the summary() command will return an ANOVA table instead of regression output. 
 
Although only one variable is statistical, just as we saw with regression modeling, the best 
way to go about our ANOVA analysis is to perform stepwise deletion, working backwards by 
removing the largest interactions first, and testing each model along the way. We could 
simply stop after this first pass and proclaim that gender is the only variable that is statistical, 
but that would not be finding the minimally adequate model. I suggested in the chapter on 
regression and I will also suggest here that finding the minimally adequate model is a much 
more informative analysis than a simple full factorial model with reporting on which main 
effects and interactions are statistical. What we will find is that, by performing the minimally 
adequate model, the stepwise removal of variables may change the analysis along the way, 
since order matters in a data set where the number of persons in groups is not strictly equal 
(as is true in this case). 
 
Now we will simplify the model by removing the least significant terms, starting with the 
highest-order terms first (in our case, we’ll remove the third-order interaction first). 
 

model2=update(model,~.-gender:MusicT1:PicturesT1) 
 
Remember, the syntax here must be exactly right! The syntax in the parentheses that comes 
after the name of the model to update (here, called just ―model‖) is ―comma tilde period 
minus.‖ This syntax means that model2 will take the first argument (model) as it is and then 
subtract the three-way interaction. Now we compare the updated model to the original model 
using anova(). 
 

anova(model,model2) 
 

 
 
The fact that the ANOVA is not statistical tells us that our newer model2 does not have 
statistically higher deviance than the original model, and thus it is not worse at explaining 
what is going on than the original model. We prefer model2 because it is simpler. We can 
now look at a summary of model2 and decide on the next least statistical argument to take 
out from among the two-way interactions: 
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summary(model2) 
 

 
 
The least statistical of the two-way interactions is gender:PicturesT1 (it has the highest p-
value), so we will remove that in the next model. 
 

model3=update(model2,~.- gender:PicturesT1) 
anova(model2,model3) 
 

 
 
Again, there is no difference in deviance between the models, so we will leave this 
interaction term out. Examining the summary of model3: 
 

 
 
we see that the next interaction term with the highest p-value is MusicT1:PicturesT1. 
 
I will leave it to the reader to verify that, by continuing this procedure, you will reach 
model7, which contains only the variable of gender. At this point, we should compare a 
model with only gender to the null model, which contains only the overall average score and 
total deviance. The way to represent the null model is simply to put the number ―1‖ as the 
explanatory variable after the tilde. If there is no difference between these two models, then 
what we have found is that none of our variables do a good job of explaining what is going 
on! 
 

model8=aov(gnsc1.1~1) 
anova(model7,model8) 
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Fortunately, here we find a statistical difference in the amount of deviance each model 
explains, so we can stop and claim that the best model for the data is one with only one 
explanatory variable, that of gender. 
 

summary(model7) 
 

 
 
The regression output for the same model will give more information: 
 

summary.lm(model7) 
 
[output cut here] 
 

 
 
The multiple R

2
 value shows that the variable of gender accounted for about 8% of the 

variance in scores, a fairly small amount. Notice that the F-statistic and p-value given in the 
regression output are exactly the same as in the ANOVA table, but this is only because there 
is only one term in the equation. 
 
A shortcut to doing the stepwise deletion by hand is the command boot.stepAIC from the 
bootStepAIC library with the original full factorial model (as mentioned in Chapter 7, this 
function is much more accurate and parsimonious than the step command found in R’s base 
library): 
 
boot.stepAIC(model,data=obarow) #need to specify data set even though attached! 
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The full model has an AIC (Akaike information criterion) score of 60.66. As long as this 
measure of fit goes down, the step procedure will continue to accept the more simplified 
model, as we did by hand. In other words, the lower the AIC, the better (the AIC is a measure 
of the tradeoff between degrees of freedom and the fit of the model). The second line of the 
steps indicated on the print-out shows that a model that has removed the three-way 
interaction has a lower AIC than the full model (59.34 as opposed to 60.66). The step 
procedure’s last step is to stop when there are still three terms in the equation. 
 
Let’s check out the difference between this model that boot.stepAIC kept (I’ll create a 
model9 for this) and the model we retained by hand (model7). 
 

model9=aov(gnsc1.1~gender+MusicT1+gender:MusicT1) 
summary.lm(model9) 
 
data deleted . . . 

 
 
We find that model9 has a slightly smaller residual standard error on fewer degrees of 
freedom than model7 (1.495 for model9, 1.498 for model7), and a higher R

2
 value (11.2% 

for model9, 7.9% for model8), but a model with more parameters will always have a higher 
R

2
 (there are 64 participants in the Obarow study, and if we had 64 parameters the R

2 
fit 

would be 100%), so this is not surprising. 
 
An ANOVA table shows that neither the MusicT1 nor the interaction gender:MusicT1 is 
statistical in this three-parameter model. 
 

summary(model9) 
 

 
 
Just to make sure what we should do, let’s compare model7 to model9 using anova(). 
 

anova(model7,model9) 
 

 
 
An ANOVA finds no statistical difference between these models. All other things being 
equal, we prefer the model that is simpler, so in the end I will retain the model with only the 
main effect of gender. 
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The message here is that, although boot.stepAIC can be a useful tool, you will also want to 
understand and know how to hand-calculate a stepwise deletion procedure. Crawley (2007) 
notes that step procedures can be generous and leave in terms which are not statistical, and 
you will want to be able to check by hand and take out any terms which are not statistical. 
Another situation where a stepping command is not useful is when you have too many 
parameters relative to your sample size, called overparameterization (see the online section 
―Multiple Regression.Further steps in finding the best fit‖ for more information on this). In 
this case, you should work by hand and test only as many parameters as your data size will 
allow at a time. 
 
Now that the best fit of the data (so far!) has been determined, it is time to examine ANOVA 
(regression) assumptions by calling for diagnostic plots: 
 

plot(model7) 
detach(obarow) 
 
Plotting the model will return four different diagnostic plots, shown in Figure 11.9. 
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Figure 11.9 Diagnostic plots for a minimally adequate model of Obarow (2004). 
 
The first plot, shown in the upper left-hand corner of Figure 11.9, is a residual plot, and if the 
data have equal variances it should show only a random scattering of data. Since the data 
values are so discrete we don’t really see a scattering at all, but the outliers on the right-hand 
side of the plot (we know they are outliers because they are numbered) may indicate that the 
residuals are increasing as the fitted values get larger, indicating a problem with 
heteroscedasticity. The second plot, shown in the upper right-hand corner, tests the data 
against the assumption of a normal distribution. The data should be reasonably linear, and, 
although the discreteness means that the middle points form little parallel lines instead of 
following the diagonal, there also does not seem to be any clear pattern of non-normality 
(such as an S-shaped or J-shaped pattern in the Q-Q plot). The third plot, shown in the lower 
left-hand corner, is, like the first plot, meant to detect heteroscedasticity, and if there were 
problems the data would show a pattern and not be randomly scattered. The last plot, in the 
lower right-hand corner, is meant to test for influential points, and these are identified as 3, 
14, and 48 in the Obarow (2004) data set. Crawley (2002, p. 240) says the two biggest 
problems for regression/ANOVA are heterogeneity of variances (non-constant variance 
across the x-axis) and non-normal errors. There seem to be problems in this model with both 
non-normal points (some outliers with influence) and possibly heterogeneity of variance. 
 
One way of dealing with non-normality would be to run the analysis again and leave out the 
influential points, and report the results of both ways to the reader (although by now you 
probably know this type of analysis would not be my recommendation). If you were to do 
this properly, you would start again with the full model, but just to show how this could be 
accomplished in R, here is the code for our minimally adequate model with the three 
influential points identified in plot 4 removed: 
 

model.adj=aov(gnsc1.1[-c(3,14,48)]~gender[-c(3,14,48)],data=obarow) 
summary.lm(model.adj) 
 
The problem is that there are still outliers, and new influential points pop up when we remove 
the previous three points. Thus, my preference would be to use a robust ANOVA order to 
address the issues of both non-normality and possible heterogeneity of variances. 
 
The final summary that I would make of the Obarow (2004) data is that there was no 
difference (at least, in the immediate gain score) for the effect of music and pictures, but there 
was an effect for gender. One idea to take away from the Obarow data is that, when expected 
results fail to materialize, it often pays to explore your data a bit to look for other explanatory 
variables. Obarow (2004) looked at her data using only the music and pictures variables and 
found no statistical results. 
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The results of a factorial ANOVA should include information about the type of ANOVA you 
used, and by this I mean information about the regression equation that was used in your 
analysis. Your reader should know whether you just used a full factorial model (as many 
commercial statistical programs like SPSS do) or whether you searched for the minimal 
adequate model, as I have recommended. Reports of these two different types of analyses will 
be quite different. If you do a minimal adequate model you should report on the steps you 
took in the search for the minimal adequate model and report the change in deviance and 

Conducting a Factorial ANOVA Using R 
 
There is no simple formula for conducting a factorial ANOVA in R, but there are 
steps to take: 
 
1. Create a full factorial model of your data using either aov() or lm() 
 

model1=aov(gnsc1.1~gender*MusicT1*PicturesT1, data=obarow) 
 
2. Begin to look for the best model that fits the data. You might start with the step 
function from the bootStepAIC library: 
 

boot.stepAIC (model1) 
 
3. Confirm boot.stepAIC’s choices with your own stepwise deletion procedure: 
 
 a. Look at ANOVA table of model (use anova()) and decide which one term to 
delete in the next model. 
 b. Choose the highest-order term to delete first. If there is more than one, choose the 
one with the highest p-value. If an interaction term is statistical, always retain its 
component main effects (for example, if gender*MusicT1 is statistical, you must 
keep both gender and MusicT1 main effects). 
 c. Create a new model by using update: 
 

model2=update(model1,~.-gender:MusicT1:PicturesT1, data=obarow) 
  
d. Compare the new and old model using anova: 
 

 anova(model1, model2) 
  
e. If there is no statistical difference between models, retain the newer model and 
continue deleting more terms. If you find a statistical difference, keep the older model 
and you are finished. 
 f. Finally, you may want to compare your model with the null model, just to make 
sure your model has more explanative value than just the overall mean score: 
 

 model.null=lm(gnsc1.1~1,data=obarow) 
 
4. When you have found the best fit, check the model’s assumptions of normality and 
constant variances (homoscedasticity): 
 

plot(maximalModel) 
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possibly also AIC scores for the models (check the deviance and AIC of models by hand by 
using the deviance() and AIC() commands). 
 
Results should also include information about how you checked regression assumptions of 
the data, along with descriptive statistics such as the N, means, and standard deviations. 
Besides F-values and p-values for terms in the regression equation, you should provide effect 
sizes. For post-hoc tests or planned comparisons, report p-values. 
 
Here is an example of a report you might write for the Obarow (2004) data if you just looked 
at the full model: 
 
A 2×2×2 full factorial ANOVA examining the effects of music, pictures, and gender on the 
increase in participants’ vocabulary size found a statistical effect for the main effect of gender 
only (F1,56 = 4.486, p=.039, partial eta-squared=.07). None of the effect sizes for any other 
terms of the ANOVA were above partial eta-squared=.03. Females overall learned more 
vocabulary after hearing the story three times (M=1.53, sd=1.76, n=33) than males did 
(M=.67, sd=1.12, n=11). The effect size shows that this factor accounted for R

2
=7% of the 

variance in the data, which is a small effect. None of the other main effects or interactions 
were found to be statistical. I did not check any of the assumptions of ANOVA. 
 
Here is an example of a report you might write for the Obarow (2004) data if you searched 
for the minimal adequate model: 
 
A search for a minimal adequate model was conducted starting with a full factorial model 
with three independent variables of gender, use of music, and use of pictures. The ANOVA 
model began with all three main effects plus all two-way interactions and the three-way 
interaction between terms. Deleting the terms and then checking for differences between 
models, my minimal model was a model that retained only the main effect of gender 
(F1,62=5.3, p=.02). This model explained R

2
=8% of the variance in scores on the vocabulary 

test. The table below gives the steps of my model search and the change in deviance and AIC 
between models (where increase in deviance is desirable but decrease in AIC indicates better 
fit): 
 

Model Terms Deviance ΔDeviance  AIC 

Model1 Gender*Music*Pictures 128.60  244.29 

Model2 −Gender:Music:Pictures 129.97 1.37 242.96 

Model3 −Gender:Pictures 130.24 0.27 241.10 

Model4 −Music:Pictures 131.71 1.47 239.81 

Model5 −Gender:Music 136.27 4.56 239.99 

Model6 −Music 136.63 0.36 238.16 

Model7 −Pictures 139.14 2.51 237.33 

 
In checking model assumptions, this model showed heteroscedasticity and non-normal 
distribution of errors. 
 
11.4 Performing Comparisons in a Factorial ANOVA 

This section will explain what you should do in a factorial ANOVA if any of your variables 
have more than two levels. The Obarow (2004) data that was examined in the online 
document ―Factorial ANOVA.Factorial ANOVA test‖ had only two levels per variable, and 
there was thus no need to do any more analysis, because mean scores showed which group 
performed better. I will be using a data set adapted from the R data set ChickWeight. The 
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data provides the complex analysis that I want to show here, but I have renamed it in order to 
better help readers to understand the types of analyses that we would do in second language 
acquisition. I call this data set Writing, and we will pretend that this data describes an 
experiment which investigated the role of L1 background and experimental condition on 
scores on a writing sample (if you want to follow along with me, import Writing.txt file into 
R Commander, choosing ―white space‖ as the field separator, and naming it Writing). 
 
The dependent variable in this data set is the score on the writing assessment, which ranges 
from 35 to 373 (we might pretend this is an aggregated score from four separate judges who 
each rated the writing samples on a 100-point score). The independent variables are first 
language (four L1s: Arabic, Japanese, Russian, and Spanish) and condition. There were three 
conditions that students were asked to write their essays in: ―correctAll,‖ which means they 
were told their teachers would correct all of their errors; ―correctTarget,‖ which means the 
writers were told only specific targeted errors would be corrected; and ―noCorrect,‖ in which 
nothing about correction was mentioned to the students. 
 
First, a barplot will help in visually getting a feel for the multivariate data (Figure 11.10). 
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Figure 11.10 Barplot of Writing data set (adapted from ChickWeight in core R). 
 
The barplot in Figure 11.10 shows that those who were not told anything about correction got 
the highest overall scores. Those who were told everything would be corrected got the most 
depressed scores. Within the condition of ―correctAll,‖ there doesn’t seem to be much 
difference depending on L1, but within the ―noCorrect‖ condition the L1 Spanish writers 
seemed to have scored much higher. To get the mean values, we use tapply(): 
 

attach(Writing) 
tapply(score,list(L1,condition),mean) 
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Now we will begin to model. We can use either aov() or lm() commands; it makes no 
difference in the end. Using the summary call for aov() will result in an ANOVA table, while 
summary for lm() will result in parameter estimates and standard errors (what I call 
regression output). However, you can easily switch to the other form by using either 
summary.lm() or summary.aov(). In order to proceed with the method of level comparison 
that Crawley (2007) recommends, which is model simplification, we will be focusing on the 
regression output, so I will model with lm(). 
 
An initial full factor ANOVA is called with the following call: 
 

write=lm(score~L1*condition) 
Anova(write) 
 

 
 
The ANOVA shows that the main effect of first language, the main effect of condition, and 
the interaction of L1 and condition are statistical. Remember, however, that when interactions 
are statistical we are usually more interested in what is happening in the interaction and the 
main effects are not as important. Thus, we now know that scores are affected by the 
combination of both first language and condition, but we still need to know in more detail 
how L1 and condition affect scores. This is when we will need to perform comparisons. 
 
We’ll start by looking at a summary of the model (notice that this is the regression output 
summary, because I modeled with lm() instead of aov(). 
 

summary(write) 
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This output is considerably more complex than the ANOVA tables we’ve seen before, so 
let’s go through what this output means. In the parameter estimate (regression) version of the 
output, the factor levels are compared to the first level of the factor, which will be whatever 
comes first alphabetically (unless you have specifically ordered the levels). To see what the 
first level is, examine it with the levels command: 
 

levels(L1) 
[1] "Arabic" "Japanese" "Russian" "Spanish" 
 
Thus, the row labeled L1[T.Japanese] compares the Arabic group to the Japanese group 
because it compares the first level of L1 (Arabic) to the level indicated. The first level of 
condition is allCorrect. The Intercept estimate shows that the overall mean score on the 
writing sample for Arabic speakers in the allCorrect condition is 48.2 points, and Japanese 
learners in the allCorrect condition score, on average, 1.7 points above the Arabic speakers 
(that is what the Estimate for L1[T.Japanese] shows). The first three rows after the intercept 
show, then, that no group is statistically different from the Arabic speakers in the allCorrect 
condition (which we can verify visually in Figure 11.10). The next two rows, with 
―condition‖ at the beginning, are comparing the ―correctTarget‖ and ―noCorrect‖ condition 
each with the ―allCorrect‖ condition, and both of these comparisons are statistical. The last 
six rows of the output compare various L1 groups in either the ―correctTarget‖ condition or 
the ―noCorrect‖ condition with the Arabic speakers in the ―allCorrect‖ condition (remember, 
this is the default level). Thus, the last six lines tell us that there is a difference between the 
Russian speakers in the ―correctTarget‖ condition and the Arabic speakers in the ―allCorrect‖ 
condition, and also that all L1 speakers are statistically different in the ―noCorrect‖ condition 
from the Arabic speakers in the ―allCorrect‖ condition. 
 
At this point, you may be thinking this is really complicated and you really didn’t want 
comparisons only with Arabic or only in the ―allCorrect‖ condition. What can you do to get 
the type of post-hoc tests you would find in a commercial statistical program like SPSS 
which can compare all levels? The pairwise.t.test() command can perform all possible 
pairwise comparisons if that is what you would like. 
 
For example, we can look at comparisons only between the L1s: 
 

pairwise.t.test(score,L1, p.adjust.method="fdr") 
 

 
 
This shows that, overall, Arabic L1 speakers are different from all the other groups; the 
Japanese L1 speakers are different from the Spanish L1 speakers, but not the Russian L1 
speakers. Lastly, the Russian speakers are not different from the Spanish speakers. We can 
also look at the comparisons between conditions: 
 

pairwise.t.test(score,condition, p.adjust.method="fdr") 
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Here we see very low p-values for all conditions, meaning all conditions are different from 
each other. Lastly, we can look at comparisons on the interaction: 
 

pairwise.t.test(score,L1:condition, p.adjust.method="fdr") 
 

 
This is only the beginning of a very long chart . . . 
 
Going down the first column, it’s clear that none of the groups are different from the Arabic 
L1 speakers in the ―correctAll‖ condition (comparing Arabic to Japanese p=.87, Arabic to 
Russian p=.69, Arabic to Spanish p=.80). That, of course, doesn’t tell us everything; for 
example, we don’t know whether the Japanese speakers are different from the Russian and 
Spanish speakers in the ―correctAll‖ condition, but given our barplot in Figure 11.10 we 
might assume they will be when we check. Looking over the entire chart we get a full picture 
of the nature of the interaction: no groups are different from each other in the ―correctAll‖ 
condition; in the ―correctTarget‖ condition, only the Russian and Arabic and the Spanish and 
Arabic speakers differ statistically from each other; in the ―noCorrect‖ condition, all groups 
perform differently from one another. 
 
Here is the analysis of the post-hoc command in R: 
 

pairwise.t.test(score,L1:condition, p.adjust.method="fdr") 
pairwise.t.test(score, . . . Put in the dependent (response) variable as the 

first argument. 

L1:condition The second argument is the variable containing 
the levels you want compared; here, I didn’t care 
about the main effects of L1 or condition, just the 
interaction between them, so I put the interaction 
as the second argument. 

p.adjust.method="fdr" Specifies the method of adjusting p-values for 
multiple tests; you can choose hochberg, 
hommel, bonferroni, BH, BY, and none (equal 
to LSD); I chose fdr because it gives more power 
while still controlling for Type I error. 

 
We’ve been able to answer our question about how the levels of the groups differ from one 
another, but we have had to perform a large number of post-hoc tests. If we didn’t really care 
about the answers to all the questions, we have wasted some power by performing so many. 
One way to avoid such a large number of post-hoc tests would be to have planned out your 
question in advance and to run a priori planned comparisons. I do not know of any way to do 
this in one step for that crucial interaction post-hoc, but one approach would be to run the 
interaction post-hoc with no adjustment of p-values, and then pick out just the post-hoc tests 
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you are interested in and put the p-values into the FDR calculation (of course, since all of 
these post-hocs had low p-values to start with, doing this calculation for this example will not 
change anything, but in other cases it could certainly make a difference!). For example, let’s 
say you only cared about which groups were different from each other in ―noCorrect‖ 
condition. You can run the post-hoc with no adjustment of p-values: 
 

pairwise.t.test(score,L1:condition, p.adjust.method="none") 
 
Picking out the p-values for only the ―noCorrect‖ condition, they are: 
 

 Arabic Japanese Russian 

Japanese 7.4e-05   

Russian 7.4e-11 .016  

Spanish <2e-16 2.4e-07 .00599 

 
Now put these in the FDR calculation (also found in Appendix B): 
 

pvalue<-c(7.4e-05,7.4e-11,2e-16,.016,2.4e-07,.00599) 
sorted.pvalue<-sort(pvalue) 
j.alpha<-(1:6)*(.05/6) 
dif<-sorted.pvalue-j.alpha 
neg.dif<-dif[dif<0] 
pos.dif<-neg.dif[length(neg.dif)] 
index<-dif==pos.dif 
p.cutoff<-sorted.pvalue[index] 
p.cutoff 
[1] 0.016 
 
The p.cutoff value is the value under which the p-values will be statistical. Obviously, all of 
the values in this case are statistical. 
 
The final conclusion we can make is that in the ―noCorrect‖ condition L1 was very important. 
Every L1 group scored differently in this condition, with the mean scores showing that, from 
the best performers to the worst, we have Spanish L1 > Russian L1 > Japanese L1 > Arabic 
L1. In the ―correctTarget‖ condition the Russian L1 and Spanish L1 speakers performed 
better than the Arabic L1 speakers, and the Japanese were somewhere in the middle, neither 
statistically different from the Arabic speakers nor statistically different from the Russian and 
Spanish speakers. For the ―correctAll‖ condition L1 made absolutely no difference. Everyone 
performed very poorly when they thought all of their mistakes were going to be graded. This 
is the story that I would tell if reporting on this study. 
 

 
 

Tip: Sometimes logic doesn’t work with multiple comparisons! For example, 
you may at times find that statistically Group A is different from Group B, and 
Group B is different from Group C, but statistically Group A is not different 
from Group C. As Howell (2002) points out, logically this seems impossible. If 
A ≠ B and B ≠ C, then logically A ≠ C. However, logic is not statistics and 
sometimes there is not enough power to find a difference which logically should 
be there. Howell says sometimes we just have to live with uncertainty! 
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11.5 Application Activities with Factorial ANOVA 

1. Obarow (2004) data. In the online document ―Factorial ANOVA.Factorial ANOVA test‖ I 
performed a factorial ANOVA on the gain score for Obarow’s Treatment 1. Import the SPSS 
file Obarow.Story2.sav and call it obarow2. You will need to prepare this data for analysis as 
outlined in the online document ―Factorial ANOVA.Putting data in correct format for 
factorial ANOVA.‖ You will need to decide whether to select cases. You will need to change 
the trtmnt2 variable into two different IVs, music and pictures (use the values for trtmnt2 to 
help guide you). Then calculate a gain score. Once you have configured the data to a form 
ready to perform an ANOVA, visually and numerically examine the data. Last, perform a 
factorial ANOVA to find out what effect gender, music, and pictures had on the gain score 
for the second treatment/story. 
 
2. Larson-Hall and Connell (2005). Import the LarsonHall.Forgotten.sav data set as forget. 
Use the SentenceAccent variable to investigate whether the independent variables of 
gender (sex) and (immersion) status could help explain variance in what kind of accent 
rating participants received. You will need to use post-hoc tests with this data, because there 
are three levels for the status variable. Be sure to comment on assumptions. 
 
3. Import the Eysenck.Howell13.sav data set as eysenck. This data comes from a study by 
Eysenck (1974), but the data are given in Howell (2002), Chapter 13. Eysenck wanted to see 
whether age group (young=18–30 years, old=55–60 years) would interact with task condition 
in how well the participants could recall words from a word list. There were five conditions, 
four of which ascertained whether the participants would learn the words incidentally, but 
some tasks required more semantic processing than others. The tasks were letter counting 
(Counting), rhyming the words in the list (Rhyming), finding an adjective to modify the 
noun in the list (Adjective), forming an image of the word (Imagery), and control 
(Intention; intentionally trying to learn the word). You will first need to rearrange the data 
from the wide form to the long form. Perform a 2 (AgeGroup) × 5 (Condition) factorial 
ANOVA on the data. 
 
11.6 Performing a Robust ANOVA 

In this section I will provide an explanation of some of Wilcox’s (2005) robust methods for 
two-way and three-way ANOVAs. Before using these commands you will need to load 

Performing Comparisons after a Factorial ANOVA with R 
 
1. If the comparison you want to make is with just the one factor level that R uses as a default, 
the output of the summary.lm() (if you have modeled with aov()) or summary() (if you have 
modeled with lm()) can provide enough information to make comparisons. 
 
2. You can target only certain main effects or certain interactions by using the syntax: 
 
pairwise.t.test(Writing$score,Writing$L1, p.adjust.method="fdr") #for main effect 
pairwise.t.test(Writing$score:Writing$L1, p.adjust.method="fdr")#for interaction 
where the first argument is the response variable and the second is the explanatory variable. 
 
3. To simulate planned comparisons, use the pairwise.t.test() with no adjustment for p-values 
(p.adjust.method="none"); then pick out the comparisons you want and use the FDR 
method (Appendix B) to adjust the p-values and calculate a cut-off value to substitute for 
alpha=.05. 
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Wilcox’s library, WRS, into R (see the online document ―Using Wilcox’s R library‖ to get 
started with this). The command t2way() uses trimmed means for a two-way ANOVA, the 
command t3way() uses trimmed means for a three-way ANOVA, and the command 
pbad2way() uses M-measures of location (not means) in a two-way design. For all of these 
tests, the data need to be stored in a matrix or list. Wilcox (2005, p. 280) gives the table found 
in Table 11.2, which shows which column contains which data (where x[[1]] means the data 
in column 1 of a matrix or the first vector of a list). 
 
Table 11.2 Data Arranged for a Two-Way ANOVA Command from Wilcox 
 

 Factor B 

Factor A x[[1]] x[[2]] x[[3]] x[[4]] 
x[[5]] x[[6]] x[[7]] x[[8]] 

 
Thus, the data for level 1 of both Factors A and B is contained in the first vector of the list 
(x[[1]]), the data for level 1 of Factor A and level 2 of Factor B is contained in the second 
vector of the list (x[[2]]), and so on. 
 
If you have your data already in the wide format, there is no need to put it into a list. Instead, 
you can tell the command what order to take the columns in by specifying for grp, like this: 
 

grp<-c(2,3,5,8,4,1,6,7) 
 
where column 2 (as denoted by c(2)) is the data for level 1 of Factors A and B, column 3 is 
the data for level 1 of Factor A and level 2 of Factor B, etc. 
 
For Obarow’s data let’s look at a two-way ANOVA with music and pictures only. There are 
two levels to each of these factors. I will call ―No music No pictures‖ level 1 of Factor Music 
and Factor Pictures, ―No music Yes pictures‖ level 1 of Music and level 2 of Pictures, ―Yes 
music No Pictures‖ level 2 of Music and level 1 of Pictures, and ―Yes music Yes pictures‖ 
level 2 of both factors. I will create a list from the Obarow.Story1.sav file, which I previously 
imported as ObarowStory1 and subset the variables for the immediate gain score into 
separate vectors in the list. 
 
levels(obarowStory1$Treatment1) #find out exactly what names to use to subset 

[1] "No Music No Pictures" "No Music Yes Pictures" "Yes Music No Pictures" 
[4] "Yes Music Yes Pictures" 
O2way=list() 
 O2way[[1]]=subset(obarowStory1, subset=Treatment1=="No Music No Pictures", 
select=c(gnsc1.1)) 
 O2way[[2]]=subset(obarowStory1, subset=Treatment1=="No Music Yes Pictures", 
select=c(gnsc1.1)) 
 O2way[[3]]=subset(obarowStory1, subset=Treatment1=="Yes Music No Pictures", 
select=c(gnsc1.1)) 
 O2way[[4]]=subset(obarowStory1, subset=Treatment1=="Yes Music Yes Pictures", 
select=c(gnsc1.1)) 
 
Now I can run the t2way() test: 
 

library(WRS) 
t2way(2,2,O2way,tr=.2,grp=c(1,2,3,4)) #the first two numbers indicate the number of 
levels in the first variable and the second variable, respectively 
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The output from this test returns the test statistic Q for Factor A (which is Music here) in the 
$Qa line, and the p-value for this test in the $A.p.value line. So the factor of Music is not 
statistical, p=.26. Neither is the factor of Pictures (p=.53), nor the interaction between the 
two (p=.95). 
 
If there had been statistical effects for groups, and the groups had more than two levels, you 
would want to perform multiple comparisons to find out which levels were statistically 
different for one another. For this, the command mcppb20(), which uses means trimming 
and the percentile bootstrap, would be the appropriate command. This command was 
explained in the online document ―One way ANOVA. A robust one-way ANOVA test‖ and 
could be used with the O2way list we just created. 
 
For a two-way analysis using percentile bootstrapping and M-estimators, the command 
pbad2way() can be used. The data need to be arranged in exactly the same way as for the 
previous command, so we are ready to try this command out: 
 

pbad2way(2,2,O2way,est=mom, conall=T, grp=c(1,2,3,4)) 
 
The term conall=T means that all possible pairs are tested, while using the term conall=F 
would provide an alternative strategy that might affect power (see Wilcox, 2005, p. 318 for 
more details). This term can be used with the modified one-step M-estimator (MOM), as 
shown here, or the median (est=median). The output will simply return significance levels 
for the two variables and the interaction. 
 
Obviously a three-way interaction will be more complicated. The command t3way() also 
requires data to be set up in a specific way. The easiest way to do this again will be to create a 
list. Now we need to arrange the data so that, for level 1 of Factor A, we will find the first 
vector of the list contains level 1 for Factor B and level 1 for Factor C. The second vector will 
contain level 1 for Factor A, level 1 for Factor B, and level 2 for Factor C. See Table 11.3 
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(taken from Wilcox, 2005, p. 286) for more details on how a design of 2×2×4 would be set 
up. 
 
Table 11.3 Data Arranged for a Three-Way ANOVA Command from Wilcox 
 
Level 1 of Factor 
A 

Factor C 

Factor B x[[1]] x[[2]] x[[3]] x[[4]] 
x[[5]] x[[6]] x[[7]] x[[8]] 

 
Level 2 of Factor 
A 

Factor C 

Factor B x[[9]] x[[10]] x[[11]] x[[12]] 
x[[13]] x[[14]] x[[15]] x[[16]] 

 
For the Obarow data then, using a 2×2×2 design with Gender included as Factor C, we would 
have the data arranged as indicated in Table 11.4. 
 
Table 11.4 Obarow Data Arranged for a Three-Way ANOVA 
 
Music: No Gender: 

Male Female 
Pictures:  No x[[1]] x[[2]] 

Yes x[[3]] x[[4]] 
  
Music: Yes Gender 

Male Female 
Pictures: No x[[5]] x[[6]] 

Yes x[[7]] x[[8]] 
 
I don’t know how to subset with two variables at a time, so I will first create two data sets, 
one with males and one with females, before I subset once more for the treatment categories: 
 

obarowStory1Male <- subset(obarowStory1, subset=gender=="male") 
obarowStory1Female <- subset(obarowStory1, subset=gender=="female") 
O3way=list() 
 O3way[[1]]=subset(obarowStory1Male, subset=Treatment1=="No Music No 
Pictures", select=c(gnsc1.1)) 
 O3way[[2]]=subset(obarowStory1Female, subset=Treatment1=="No Music No 
Pictures", select=c(gnsc1.1)) 
 O3way[[3]]=subset(obarowStory1Male, subset=Treatment1=="No Music Yes 
Pictures", select=c(gnsc1.1)) 
 O3way[[4]]=subset(obarowStory1Female, subset=Treatment1=="No Music Yes 
Pictures", select=c(gnsc1.1)) 
 O3way[[5]]=subset(obarowStory1Male, subset=Treatment1=="Yes Music No 
Pictures", select=c(gnsc1.1)) 
 O3way[[6]]=subset(obarowStory1Female, subset=Treatment1=="Yes Music No 
Pictures", select=c(gnsc1.1)) 
 O3way[[7]]=subset(obarowStory1Male, subset=Treatment1=="Yes Music Yes 
Pictures", select=c(gnsc1.1)) 
 O3way[[8]]=subset(obarowStory1Female, subset=Treatment1=="Yes Music Yes 
Pictures", select=c(gnsc1.1)) 
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Now I am ready to perform the three-way analysis using trimmed means: 
 

t3way(2,2,2, O3way, tr=.2) 
Error in `[.data.frame`(x, order(x, na.last = na.last, decreasing = decreasing)) : 
undefined columns selected 
 

For some reason I get an error message here. I wondered if it was because the length of the 
lists is different, but the two-way command seemed to work just fine with different-sized 
lists. So I went back and typed in the data (looking at what I had obtained from my work 
above): 
 

O3way[[1]]=c(3,3,1,3,0,1,3,1,0,1,2,1) 
O3way[[2]]=c(2,1,1,1,1) 
O3way[[3]]=c(6,-1,0,3,2,3,1,0,2) 
O3way[[4]]=c(1,0,0,1,2,-2,1,2) 
O3way[[5]]=c(4,1,4,2,0) 
O3way[[6]]=c(2,2,1,1,-1,-1,0,-2,-1,2) 
O3way[[7]]=c(1,5,-1,0,2,0,1,-2) 
O3way[[8]]=c(1,2,1,0,1,-1,1) 
t3way(2,2,2,O3way) 
 

Now the test worked fine . . . ! It started with the values for the main variables, with the main 
effect for Factor C (gender) last: 
 

 
 
Since it is a three-way ANOVA, it also returns the results of all of the two-way interactions, 
such as Music:Treatment (ab) and Music:Gender (ac), as well as the three-way interaction. 
The test statistic Q is returned along with a critical value for Q and the p-value. You can see 
in the output that the interaction between music and gender is statistical here (a different 
result from the parametric test using untrimmed means). Wilcox (2005) does not provide any 



227 
 

© Taylor & Francis 

methods for three-way analyses using bootstrapping. I’m afraid I don’t see that these robust 
tests are as useful, though, as previous ones, since there seems to be no way of searching for 
the minimal adequate model. 
 

 

Performing Robust ANOVAs Using Wilcox’s (2005) Commands 
 
1. For a two-way ANOVA, rearrange data in list form so that data in the first vector of the list, 
x[[1]], contains the information for level 1 of Factor A and level 1 of Factor B, x[[2]] contains 
the information for level 1 of Factor A and level 2 of Factor B, and so on. For a three-way 
ANOVA, separate first by levels of Factor A; then x[[1]] contains information for level 1 of 
Factor B and level 1 of Factor C, x[[2]] contains information for level 1 of Factor B and level 
2 of Factor C, and so on (this is fairly confusing, but examples are given in the text). 
 
2. Use one of Wilcox’s (2005) commands after opening the WRS library: 
 
t2way(J, K, O3way, tr=.2) #trimmed means; J=# of levels for Factor A, K=# of levels for 
Factor B 
t3way(J, K, L, O3way, tr=.2) #trimmed means; J=# of levels for Factor A, K=# of levels for 
Factor B, L=# of levels for Factor C 
pbad2way(J, K, O3way, est=mom, conall=T) #uses bootstrapping and MOM estimator (or 

median also possible); J=# of levels for Factor A, K=# of levels for Factor B 
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