
6	 Statistical terminology and  
one-sample tests

This final chapter of Part II serves as a bridge between descriptive and inferential 
statistics. We begin by defining a number of statistical terms and concepts. These 
terms are important in describing research designs and understanding statistical 
analysis, so comprehension of this vocabulary will help to establish the concep-
tual foundation for inferential statistics. Discussion of these terms is necessarily 
limited; we instead aim to provide a working vocabulary and a brief synopsis of 
the major ideas for quick reference should the need arise. Several of the presented 
concepts, such as effect size and confidence intervals, are treated in greater detail 
in subsequent chapters.

The one-sample tests at the conclusion of this chapter provide easy-to-understand 
examples of how to conduct inferential statistics. The tests themselves are of modest 
utility compared to the more powerful and commonly-employed tests later in the 
book. However, we describe these basic tests in a step-by-step manner to clarify the 
process of hypothesis testing with these examples, in order to build the foundational 
knowledge that will allow for learning more complex tests.

Introduction to statistical terminology

In Chapter 4 we covered descriptive statistics, which are used to summarize sam-
ple data. In Chapters 7–12, we will explain the application of inferential statistics, 
which attempt to reach conclusions about the underlying population. In other 
words, the goal of these analyses is to generalize the findings from the observed 
sample data as a way to understand the larger population from which the sample 
was drawn. Statistics provides the tools and structure for making those infer-
ences, and this section is devoted to a minimal set of definitions that will assist 
in understanding that process. Some of these terms have already been introduced 
and rough definitions suggested; however, this section provides more formal defi-
nitions along with some examples and discussion of the various terms.

Definition of a statistic

The formal definition of a statistic (as opposed to the discipline of statistics) is 
any function of the sample data. Therefore, a statistic is a numerical value that 
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is calculated from measurements in the collected sample. The calculation can 
involve all of the sample data, in the way that the sample mean consists of add-
ing all of the observations and dividing by the sample size. The calculation can 
involve fewer pieces of data, however, such as the median, which uses only one 
or two of the observations, depending on whether the sample size is odd or even. 
A statistic might also simply be one data point such as the maximum observation.

A statistic can serve three purposes. First, it can serve as a descriptive statistic 
of the sample. For example, the sample mean serves as a descriptive measure of 
center. The use of various descriptive statistics was covered in Chapter 4. The 
remaining two purposes are needed for inferential statistics. The second use of a 
statistic is as an estimator, in which the number provides an approximation of the 
unknown population parameter. For example, the sample mean is an estimator for 
the unknown population mean. The next subsection of this chapter is devoted to 
the topic of parameter estimation. The third application of a statistic is for hypoth-
esis testing, in which the calculated figure is used to compare the sample data to 
a theoretical distribution. This comparison is made in order to determine whether 
to reject the null hypothesis. Hypothesis testing is described more fully below.

Parameter estimation

One purpose of inferential statistics is parameter estimation. A parameter is an 
unknown property of a population that is estimated by the collection of sample 
data and calculation of a statistic. The parameter thus serves as the target quan-
tity when thinking in terms of validity and reliability. A parameter is considered 
fixed for a given population at a given time. Conversely, a statistic varies based 
on several sources of error. The reasons for variability include sampling error 
and measurement error. Theoretically, if an entire population could be measured 
simultaneously (a census), then the parameter could be known with certainty.

An example of a parameter is the average height of all the adult women in 
Norway. At any moment in time, this is a fixed number. If we could measure 
every single woman in the country simultaneously, we could calculate the true 
average height of the population. Of course, this data collection process is impos-
sible; by the time we gathered and processed the data, the population would have 
changed (e.g., people grow or immigrate) so that the number would no longer be 
the true parameter. To overcome this challenge, we collect a random sample and 
use the average height of the sample as an estimate of the population parameter.

Just like the previous height example, we could hypothetically calculate the 
average hourly wage of every person in the country to obtain a single average. 
This number would encompass all of the variability that exists with respect to 
professions, years of working experience, and any other variable impacting how 
much a person earns. We could do the same if we were interested in the average 
wage of a certified court or medical interpreter in a given country. However, all of 
these scenarios are impractical, and we would instead calculate an estimate. Data 
could be collected from a random sample of interpreters by means of a survey on 
wage information in order to estimate this unknown parameter.
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Thinking of a parameter as a fixed goal of estimation is appropriate only after 
careful definition of the population. A parameter is fixed only for a well-defined 
population at a given moment in time. The parameter of average wage of court 
interpreters in one country is different from the average wage of court interpret-
ers in another country. Moreover, parameters can and will change over time. The 
quality of a parameter estimate also depends on the quality of the sample, the 
validity and reliability of the estimator, and various other errors that can introduce 
variability. One of the main tasks of statistics is to provide high-quality parameter 
estimates.1

Confidence intervals

Parameter estimation results in a single number estimate, called a point estimate. 
This estimate can be thought of as a best guess approximation of the population 
parameter. However, different samples will result in different point estimates; 
there remains uncertainty about how far our sample estimate lies from the popu-
lation parameter. Rather than estimating with a single number, therefore, it is 
possible to construct an interval estimate called a confidence interval around the 
point estimate. The goal is to define the confidence interval in such a way that the 
parameter lies within the interval.

If we think again about calculating the average height of women in Norway, 
one sample of 30 women might give an estimate of 165 cm. If we repeat the 
experiment with a new sample of 30 different women, we might get a sample 
mean of 169 cm instead. Theoretically, we could repeat the process over and 
over again: collecting a sample of 30 women, calculating the sample mean, and 
constructing a confidence interval around the mean. In every case, the confidence 
interval would be a particular function of the sample data. Therefore, in each case 
the confidence interval either contains the parameter or it does not. By repeating 
the process many times and by constructing the confidence intervals in a particu-
lar way based on probability theory, we can predict how often the confidence 
interval contains the parameter.

In almost all cases, confidence intervals are constructed for 95% confidence 
and symmetrically around the point estimate. Therefore, the formula for the end-
points of a confidence interval can be compactly written as the point estimate plus 
or minus a distance determined by the sample’s variability and a number from 
the appropriate probability distribution. Examples that accompany each statistical 
test in this volume will clarify the exact procedures necessary, and most software 
packages provide appropriate confidence intervals automatically around point 
estimates. For the primary tests of a research project, a confidence interval should 
always be reported to improve interpretation beyond the simple point estimate.

The best way to think of a confidence interval is as an interval estimate based 
on the sample data. Imagine you were offered a prize if you could guess how 
many marbles were in a jar. The number of marbles in the jar is a parameter, a 
fixed but unknown trait. If you were allowed only to guess one number, say 210, 
you would be very unlikely to be correct. However, if you could guess an interval, 
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perhaps guessing that the number of marbles was between 170 and 250, then 
you would be more likely to win the prize. The estimate would be more likely to 
include the parameter. Of course, your guess is either right or wrong; you are not 
95% likely to win the prize. A 95% confidence interval means that if the sampling 
and calculation process was repeated an infinite number of times, then 95% of 
the confidence intervals would contain the true parameter. Over-interpretation 
beyond that should be avoided.

Hypothesis testing

Null and alternative hypotheses were introduced in Chapter 1. The two hypoth-
eses represent different models or structures of the underlying population. In the 
process of hypothesis testing, the null hypothesis is assumed to be true unless the 
sample data provide convincing evidence otherwise. In that case, the sample data 
would suggest that the alternative hypothesis is a better description of the sample 
data. For instance, a very simple statistical model might have a null hypothe-
sis claiming that the average hourly wage of a conference interpreter is $1,200. 
Obviously any collected data would reject this null hypothesis as a poor model 
of the actual hourly wage of conference interpreters (though it would be nice!).

The process of conducting a hypothesis test involves the determination of two 
numbers. First, a test statistic is calculated from the sample data. The test statistic 
could be the same as a descriptive statistic, such as the variance, or a statistic with 
a more complicated formula. Second, a critical value is found from a theoretical 
distribution, such as the F-distribution. Then, the magnitude of these two numbers 
is compared. The comparison leads to a decision about the null hypothesis. Test 
statistics that are more extreme (more negative or more positive) than the criti-
cal value lead to rejection of the null hypothesis. This section describes various 
terms related to hypothesis testing and closes with a discussion of some criti-
cisms, strengths, and weaknesses of the procedure.

Errors, power, and p-values

In reaching the decision of a hypothesis test, two different errors could occur. 
Type I error describes the situation in which the null hypothesis is rejected, even 
though it is true. A Type I error corresponds with a false positive, wherein the 
sample suggests a relationship or a difference exists, even though no such effect 
is present. In contrast, a Type II error describes the opposite situation, in which 
the test procedure fails to reject the null hypothesis, even though it is false. The 
probability of a Type I error is denoted with the Greek letter alpha, α, and the 
probability of a Type II error is denoted with beta, β.

The simile of a Type I error as a false positive is often clear in a medical 
context. If a person tests positive for a disease they do not have, they might be 
subjected to unnecessary treatments. If a pill is incorrectly proclaimed to be able 
to cure a disease, many people might waste time and money (not to mention risk-
ing side effects) with no benefit. In translation and interpreting (T&I) studies, 
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a simple corresponding example might be pedagogical studies. In that setting a 
Type I error would be an announcement that a new method of instruction or study-
ing would increase the speed of language acquisition, when in fact, there is no 
measurable benefit when applied to the whole population. A Type I error provides 
false information that can lead to bad results, wasted resources, and misdirected 
research efforts based on incorrect decisions.

The level of Type I error is set in advance by the researcher by choosing a 
significance level for the statistical test. In every statistical test in this volume, 
the significance level is set at 5%, which is a nearly universal standard in applied 
social science research. The statistical testing procedures are designed to maintain 
this chance of rejecting the null hypothesis when it is true (committing a Type I 
error). Keep in mind that the level is arbitrary and that interpretation of statistics 
needs to include more than one piece of information.

A Type II error is the failure to reject an incorrect null hypothesis. This type 
of mistake would rarely result in any announcement of the findings or action 
taken, so a Type II error is considered less severe than a Type I error. When the 
level of Type II error is subtracted from one, the resulting number is referred to 
as statistical power. So a 20% probability of Type II error implies 80% statistical 
power. Power is the probability of correctly rejecting the null hypothesis when it 
is false. The level of power is not directly controlled by the researcher, but larger 
sample sizes always lead to increases in power. Balanced designs that have the 
same number of participants in each group also generally increase power. Finally, 
several different statistical procedures will exist for testing any given research 
design; selection of the best test is often driven by power considerations.

Power considerations should always occur before any statistical procedures are 
conducted. Estimating a minimally meaningful effect, selecting the best test sta-
tistic, and determining the necessary sample size are all related to statistical power 
and should be part of the planning stage of any research project (Lenth 2001). Post 
hoc power considerations are not useful and do not convey any additional infor-
mation beyond the p-value and confidence interval (Hoenig and Heisey 2001; 
Colegrave and Ruxton 2003).

When a test statistic is calculated, the result can be compared to a theoretical 
probability distribution. The distribution implies the likelihood of observing that 
particular result. An important probability in this context is called the p-value. In 
calculating the p-value, it is assumed that the null hypothesis is true, and the prob-
ability distribution of the test statistic is developed under that assumption. Then 
the computed test statistic from the sample is compared to the distribution. The 
probability of getting a more extreme test statistic (larger in absolute value) is the 
formal definition of the p-value. Therefore, the p-value represents the probability 
of an even more unusual result than the particular sample. If that probability is 
low, meaning less than 5%, then the sample would appear to violate the assump-
tion that the null hypothesis is true. Thus, the null hypothesis would be rejected.

For example, we might compare the means of two groups with a null hypothe-
sis that they are the same. When a difference is observed, the appropriate question 
is whether the difference is large enough to constitute a significant difference or 
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whether the difference is small and due simply to random experimental error. 
Thanks to modern statistical computing software, a p-value provides a fast way to 
make a decision regarding a statistical test. If the p-value is less than .05, the null 
hypothesis is rejected. Otherwise, there is not enough evidence to reject the null 
hypothesis at the 5% level of significance.

A result should be declared either statistically significant or not statistically 
significant only at the pre-determined level. The significance level is almost 
always 5% in social science, but this level is traditional and arbitrary. The deter-
mination that a result is meaningful should be provided by a measure of effect 
size,2 reporting of the descriptive statistics, and a discussion of how the results 
fit into the larger body of scholarship on the particular topic. Strictly describing 
p-values in terms of “statistical significance” rather than just “significance” can 
help prevent this misunderstanding.

The precise numeric value should not be over-interpreted.3 An all too com-
mon, although incorrect, practice is attempting to use a p-value to demonstrate 
the importance of a statistical result. Asterisks sometimes appear in tables for 
tests that result in different levels of p-values with an implication that smaller 
p-values are somehow more significant. Rasch, Kubinger, Schmidtke, and 
Häusler (2004) argue strongly against this practice, despite its wide adoption 
by statistical software and its use in many publications. An equally erroneous 
practice is the suggestion that a p-value larger than .05 somehow “approaches” 
significance or is “nearly significant.” A final caution regarding p-values is 
that simple comparisons between them are not appropriate (Gelman and Stern 
2006). This issue is discussed further in the final chapter of the volume on the 
topic of reporting.

Degrees of freedom

For many people who have survived an introductory statistics class, degrees of free-
dom (often abbreviated df in reporting) is a poorly understood concept that amounts 
to rote formulas needed for certain statistical tests and distributions. We cannot 
hope to provide a complete formal understanding in a brief treatment, but a defini-
tion in simple language and some examples will hopefully clarify the main intent. 
Degrees of freedom in general can be thought of as how many additional facts or 
pieces of data are required so that everything about the relevant variable is known. 
For example, imagine that you are told that a sample contains 50 people, who all 
speak either Mandarin or Korean as their primary language. If you are then also told 
that 35 people in the sample speak Mandarin, then it is automatically known that the 
remaining 15 people speak Korean. This example has only one degree of freedom 
because learning one piece of information (i.e., that 35 people speak Mandarin) 
allowed for complete knowledge about the distribution of language in the sample.

We can extend this example to multiple languages. A sample of 100 cit-
izens of Switzerland could contain people who have as their L1 one of its four 
official languages: German, French, Italian, or Romansh. If it is known that 
38 people have German as their first language, 27 French, and 23 Italian, then 
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it automatically follows that 12 people speak Romansh as their L1. Knowing 
three pieces of information provide complete information about the variable in 
this case. Consequently, there are three degrees of freedom. This pattern that 
the degrees of freedom are one less than the number of categories holds true 
in many cases, particularly for analysis of variance (ANOVA; see Chapter 8).  
In many situations the degrees of freedom are one less than the sample size, based on 
a similar argument.

A bit more formally, we mentioned in Chapter 4 that the denominator in the 
sample variance calculation (n−1) is the number of degrees of freedom for the 
estimate. The reason is that the normal distribution has only two parameters:  
the mean and the variance. In order to calculate the variance, the mean must first 
be estimated, and this estimation creates a restriction in the relationships among 
the sample data. Therefore, another way of thinking about degrees of freedom is 
that you start with the sample size and subtract one degree of freedom for every 
estimated parameter. This way of thinking aligns well with regression design and 
more complicated ANOVA models.

The reason degrees of freedom matter when conducting inferential statistics is 
that they determine the shape of the theoretical distribution that is used for find-
ing the critical value. In particular, the t-distribution and the χ2-distribution have 
different shapes based on the related degrees of freedom, and the F-distribution 
requires two different measures of degrees of freedom, called the numerator 
and denominator degrees of freedom. For the non-mathematically inclined, the 
degrees of freedom are usually easy to find in computer output and should always 
be reported in parentheses or brackets behind the name of the distribution in any 
research report. For instance, if a t-statistic was 1.85 with 24 degrees of freedom, 
it would be reported as t(24) = 1.85.

Residual errors

Hypothesis testing always involves the consideration of statistical models to 
describe data. Once a model has been estimated, the predictions of the model can 
be compared to the observed data. The difference between the predicted values 
and the actual values are referred to as residuals or residual errors.

The sample mean is an example of one of the simplest statistical models. If the 
average height of American men is approximately 177 cm, then the best guess for 
any randomly selected man is that he will be 177 cm tall. If a randomly selected 
man is 180 cm tall, then the residual error for that observation is 3 cm. More 
complicated models can make better predictions using more information. For 
instance, a regression model could use a person’s gender, weight, shoe size, and 
age to predict his or her height. The model’s equation would make a prediction 
that could be compared to sample data and the residual would be the difference 
between the prediction and the observed measurement.

Residuals are useful for checking the adequacy and accuracy of statistical mod-
els. For most models, the residuals should be random and approximately follow 
the normal distribution. Obvious patterns or outliers in the residuals can suggest 
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problems with the chosen statistical model. Therefore, we will discuss residual 
errors often in Chapters 7 through 12.

Adjustments to hypothesis tests

The validity of null hypothesis significance testing (NHST) always rests on a set 
of assumptions about the sample data and the underlying population. In prac-
tice, these assumptions are never fully met, only approximated. Furthermore, a 
research project often involves conducting multiple tests with the same set of 
data. Statistical adjustments can be made in an attempt to correct for these issues.

Any adjustments made to NHST procedures are typically made in the service 
of two goals: controlling the probability of a Type I error at a specified level (usu-
ally 5%) and maximizing the power of the test (which is equivalent to minimizing 
the probability of a Type II error). Adjustments can be made in three ways. First, 
the computation of the statistic itself can be changed; taken to the extreme, a dif-
ferent test statistic can be used. Instead of the mean, we can use the trimmed mean 
or the median, for example (Wilcox 1995). Second, the degrees of freedom can be 
computed differently. Lowering the degrees of freedom is one way to acknowl-
edge a greater degree of uncertainty, thereby creating a more conservative test 
in order to reduce the chance of a Type I error. Third, the p-value cutoff can be 
reduced below a nominal 5% level. The second method corresponds to Welch’s 
adjustment to the t-test and the third method to the Bonferroni correction, both of 
which are discussed in Chapter 7.

Effect size

NHST can provide information on the probability of observing a given result, 
but effect sizes provide an understanding of the strength and practical impact of 
a difference or relationship. Ellis (2010: 5) describes this difference between two 
types of significance, by noting that “[p]ractical significance is inferred from the 
size of the effect while statistical significance is inferred from the precision of the 
estimate.” Although the shortcomings of NHST have been debated for decades, 
only in recent years has the reporting of effect sizes come to the forefront as a 
primary supplement to statistical testing. The Publication Manual of the APA 
(2009: 33–34) now emphasizes the importance and need for reporting of effect 
sizes to convey the full results of a study. However, the published literature still 
lags in providing effect sizes (Ferguson 2009; Fritz, Morris, and Richler 2012). 
Even rarer is the reporting of a confidence interval for the effect size (Algina 
and Keselman 2003). In our description of test statistics, we focus on raw effect 
sizes with only occasional references to confidence intervals surrounding them. 
Applying the lessons of confidence intervals, however, would improve interpreta-
tion, especially for smaller effect sizes.

The reporting of effect sizes communicates the practical impact or meaningful-
ness of a study’s results. Therefore, an effect size should be included for every 
statistical test, whether or not it is significant. Knowing the relative importance 
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of variables assists in the accumulation of knowledge and theory development 
(Lakens 2013).

There are three primary ways to report effect sizes. The simplest is to use the 
same units of measurement as the study and describe the actual difference. For 
instance, a study could report that post-editing MT output was, on average, 5 min-
utes faster (95% CI [2.5, 7.5 minutes]) than human translation of the same passage. 
The advantage of this approach is that it communicates the relevant difference in 
meaningful terms. However, the original units do not allow for comparison to other 
studies, so the two alternative approaches involve standardized effect sizes.

Standardized effect sizes come in two primary types, known as the d family 
and the r family. Although almost any test can be described by an effect size from 
either group, the d family measures the standardized difference between groups, 
so it is appropriate for the tests of difference that we report in Part III. Meanwhile, 
effect size in the r family focuses on the strength of relationships and are most 
appropriate for the tests in Part IV. For each of the tests we discuss, we include 
a section on the relevant effect size. For a more thorough but approachable treat-
ment, see Ellis (2010).

Parametric and nonparametric tests

The distinction between parametric and nonparametric tests lies principally in 
the assumptions that are made about the underlying population. To begin with, a 
parametric test typically assumes that the variable of interest follows a normal dis-
tribution in the population. Nonparametric tests make fewer assumptions (though, 
it should be noted, they are not assumption-free). In particular, nonparametric 
tests do not assume normality of the sample data.

The two reasons for preferring nonparametric tests in certain cases is to 
maintain control of the probability of a Type I error and to increase statistical 
power. Whenever the assumptions of a parametric test cannot be met, there is 
generally a nonparametric procedure available that will meet these two criteria. 
In this volume, we present nonparametric tests side-by-side with their parametric 
counterparts, rather than relegating them to their own chapter, as is common in 
previous books.4 The smaller sample sizes and unknown population distributions 
that characterize much of T&I research suggest that nonparametric procedures 
deserve a more prominent placement and wider adoption.

With large enough sample sizes, a claim is often made that the Central Limit 
Theorem (CLT) provides assurance of approximate normality. Therefore, non-
parametric tests are used primarily for experiments with smaller sample sizes. 
Nonparametric tests are valid for any sample size, but their advantage in terms 
of power and Type I error are generally slight with larger sample sizes. We stress 
that the decision between parametric and nonparametric methods should be based 
on an assessment of the assumptions. Both can be valid for small or large sam-
ple sizes, but generally nonparametric tests are more common for sample sizes 
smaller than 40. This number serves as a guideline only, and the final decision 
should be multi-faceted.
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Reporting results

The treatment of the terminology covered in this chapter serves two purposes. 
First, knowing the definitions will help in understanding the presentation of the 
statistical tests in later chapters. Second, the headings should serve as a checklist 
for reporting the results of statistical analysis. Reporting the results of the main 
test procedures of any research paper should include the following:

1	 An estimate of the population parameter of interest, including a confidence 
interval;

2	 A description of the statistical test procedure, including whether it was 
parametric or nonparametric and the reason that the test’s assumptions are 
adequately met;

3	 The results of the statistical test, including the value of the test statistic, its 
degrees of freedom (if appropriate), and its exact p-value;

4	 A measure of effect size.

Descriptive statistics, graphs, and tables should also be included when they 
improve interpretation. All of this information can be concisely reported in a few 
paragraphs at most, as we will illustrate in later chapters of this book. The respon-
sibility of the researcher is to interpret these numbers in a meaningful way in 
terms of the research hypothesis.

One-sample test for the mean

This section will demonstrate the procedure for the statistical test of the value of 
the mean. In doing so, we will illustrate many of the terms described so far in this 
chapter and transition from preparing and describing data to testing and making 
inferences, topics that dominate Parts III and IV. To test whether the mean value 
equals a numerical constant we employ a one-sample t-test.5 The null hypothesis 
is that the mean of the underlying population equals a specified number, and the 
two-sided alternative is that the mean does not equal that number.

The one-sample t-test examines a simple research question. For instance, 
we might investigate whether the average time needed for to translate a 500-
word passage was 120 minutes for a sample of 100 translators. The null and 
alternative hypotheses would be the following: H

0
:µ = 120 and H

1
:µ ≠ 120. We 

generated fictional data for this situation and calculated the following descrip-
tive statistics: M = 122.6 minutes, SD = 10.9 minutes, with observations ranging 
from 101.6 minutes to 156.8 minutes.

The one-sample t-test assumes that the sample data are continuous and drawn 
from a population that is normally distributed. In this case, given a fictitious 
sample size of 100, we can argue that the CLT promises approximate normality. 
Additionally, the data must be independently collected. Other tests have more 
restrictive assumptions, but this particular test is used in this chapter precisely 
because it is a simple test for introducing the general procedure.
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The appropriate test statistic is built on the sampling distribution of the sample 
mean (see Chapter 5) and is calculated by dividing the difference in the estimated 
and hypothesized mean by the standard error:
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This test statistic follows a t-distribution with 99 degrees of freedom (one less 
than the sample size). The appropriate critical value for this situation is 1.98; 
therefore, because the test statistic exceeds the critical value, the null hypothesis 
can be rejected.

When the test is conducted with statistical software, a p-value will also be 
provided. In this case, the p-value is .0197, which is less than the 5% cutoff. 
Notice that the decisions based on the critical value or on the p-value will always 
be identical, but rejection occurs when the test statistic exceeds the critical value 
and, equivalently, when the p-value is below the 5% level.

The point estimate of the population mean is simply the sample mean, and 
a confidence interval can be built around the sample mean with the following 
formula:
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The critical value from the t-distribution appears in this formula. For the example 
data, the 95% confidence interval would result in the following:
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The final step is to calculate the effect size. Because we are making a comparison 
of the degree that a sample potentially differs from a hypothesized mean, we use 
the formula for Cohen’s d:
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A more substantial discussion of Cohen’s d appears in Chapter 7. For now, it is 
sufficient to understand that .239 is a rather small effect size.

We have now completed all of the necessary calculations to report the 
results of this experiment. In practice, most of them would be conducted by 
statistical software, but effect sizes in particular often require some hand cal-
culation. Furthermore, knowing the process allows for better interpretation of 
computer output. Complete reporting would look something like that shown  
in Figure 6.1.
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This reporting includes all of the required information listed above. The pur-
pose is to allow the reader to understand not only the statistical significance but the 
practical impact of the study. The particular example here is statistically signifi-
cant. However, with a small effect size and a 95% confidence interval that nearly 
includes the hypothesized mean of 120 minutes, the meaningfulness of the results 
would be rather low. Further discussion of the results and how they relate to the 
literature would appear in the discussion and conclusion of the research report.

One-sample test for the median

Our first example of a nonparametric test is the Wilcoxon signed-ranks test (1945) 
for the median, also called simply the signed-ranks test. The procedure is relatively 
simple and introduces some of the most common issues related to nonparametric 
statistics. Assume that a professor assigns a translation exam to 100 students but 
only takes 10 of the completed exam papers home to grade and forgetfully leaves 
the rest in her office. She grades the 10 exams and observes the following scores:

55, 64, 69, 71, 74, 82, 85, 86, 89, 98

She now wants to determine whether the class median is 70. The sample median is 
78 (the average of 74 and 82). The statistical test can determine if this difference is 
unusual or extreme enough to be statistically significant or if the difference between 
70 (the hypothesized median) and 78 (the sample median) is due to random error.

As with all statistical tests, the first step is to check that the data meet the assump-
tions. The signed-ranks test has relatively few assumptions, and they are easily met:

1	 The sample is randomly drawn from the population of interest;
2	 The population is symmetric around the median for the variable of interest;
3	 The variable of interest is continuous and measured at least at the interval scale;
4	 The observations are independent.

The null hypothesis of the test is that the median is equal to some specified value, 
and the most common alternative hypothesis is the two-tailed version that the 
median is not equal to the specified value. In mathematical notation, H M c0 : =  
and H

1
: M ≠ c where c represents some number. In the example, c = 70, the 

hypothesized median score.

Figure 6.1  Reported statistics for mean time on task example

To test whether the average time-on-task was 120 minutes, a one-sample t-test was 
conducted. Results imply that the average time is greater than the hypothesized 120 minutes 
(M = 122.6, SD = 10.9, 95% CI [120.42, 124.76], t[99] = 2.37, p = .02). However, the effect 
size was small (Cohen’s d = .239). The observed mean time exceeded the hypothesized time 
by only 2.6 minutes.
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The test statistic is completed in four steps. First, the hypothesized median is 
subtracted from every observation. Second, the absolute values of the differences 
are ranked. The smallest value is given a rank of one with any differences of zero 
ignored. If ties occur, all of the tied observations receive the same rank, which is 
the mean of the rank positions they would have occupied. This rank transforma-
tion procedure is very common in nonparametric statistical tests. The ranking 
eliminates the outliers and effectively moves the data from a higher level of meas-
urement to the ordinal level of measurement.

Third, each rank is assigned the same sign as the associated difference score. 
Fourth, the ranks of the positive and negative scores are summed separately 
and labeled T+ and T−. The smaller of these two sums is the final test statistic, 
denoted T.

The procedure sounds more complex than it is in practice. Like many non-
parametric procedures, the work can be completed quite easily by hand or 
with Excel. Of course, most statistical software packages will also do these cal-
culations automatically. Table 6.1 illustrates these steps for the sample exam 
scores.

The first column displays the raw scores. The “Difference” column is the raw 
scores minus the hypothesized median value of 70. Notice that the data have been 
ordered according to the absolute value of this difference. The “Ranks” column 
provides the ranks of the differences, with ties recorded as the average of the 
associated ranks. The “Signed ranks” column contains the same number as the 
“Ranks” column with the same sign (positive or negative) as the “Difference” col-
umn. Finally, the two sums are calculated. The smaller sum is 12, and this value 
is the final T-statistic for the test.6

The final decision regarding the null hypothesis requires comparing this value 
to a table of critical values to obtain a critical value and/or p-value. Published 
tables are available for sample sizes up to 30. For a sample size of 10, the critical 
value of the two-tailed test is 8. Test statistics that are less than 8 result in rejection 
of the null hypothesis. Since the calculated test statistic in the example is 12, we 

Table 6.1  One-sample test for the median example data

Scores Difference Ranks Signed ranks

69 -1 1.5 -1.5
71 1 1.5 1.5
74 4 3 3
64 -6 4 -4
82 12 5 5
55 -15 6.5 -6.5
85 15 6.5 6.5
86 16 8 8
89 19 9 9
98 28 10 10

Sum of positive ranks: T+ 43
 Sum of negative ranks: T- 12
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cannot reject the null hypothesis. There is not enough evidence that the popula-
tion’s median is different from 70.

The remaining statistics for the signed-ranks test demand more complicated 
formulas. Therefore, we will omit their details and refer the reader to Daniel 
(1990) for general details. Of course, most applied researchers will rely on statis-
tical software. Output from the program R provides a 95% confidence interval of 
[67.5, 87.0] and a p-value of .131.

The effect size will often need to be calculated by hand until statistical software 
begins to more regularly incorporate such estimates into its procedures. Kerby 
(2014) provides a method for calculating an effect size measure in the r family. 

First, calculate the total sum of the ranks for the given sample size: S
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and then use that figure in the final calculation:
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previously, the interpretation of effect sizes is discussed further in later chapters, 
but an r value of .56 would be considered a large effect. Notice that the null 
hypothesis could not be rejected but the effect size was large. The implication 
is that further research is needed. Replication with a larger sample size or bet-
ter experimental controls will likely lead to statistical significance. However, the 
practical impact of the difference can also be interpreted directly without the need 
for statistical significance. The relevant question is whether a class median of 78 
instead of the hypothesized value of 70 is meaningful in this case.

The nonparametric test described here exhibits many common features, begin-
ning with the rank transformation of the data. Complications in confidence 
intervals and p-values are also common. In some cases, nonparametric tests 
employ large-sample approximations and correction factors for tied observations. 
These corrections complicate the numerical procedures but not the final interpre-
tation. It always remains the case that p-values less than 5% imply rejection of the 
null hypothesis. However, confidence intervals and effect sizes are also necessary 
and arguably more important than the simple decision of whether to reject the null 
hypothesis. Finally, reporting of the results (see Figure 6.2) would be similar to 
the parametric case:

Figure 6.2  Reported statistics for median test score example

To test whether the median test score was 70, a one-sample Wilcoxon signed-ranks test 
was conducted. The observed median (78) exceeded the hypothesized value. However, the 
results were not statistically significant (T = 12, p = .131, 95% CI [67.5, 87.0]). The effect size 
was large (r = .56), which suggests that the difference may have practical meaning for this 
application.
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Notes

1	 In theoretical statistics, estimators are evaluated based on a set of criteria that includes 
unbiasedness, efficiency, and consistency. For reasons of space, we must omit formal 
definitions of these and other properties. However, a significant portion of theoretical 
statistics has historically been devoted to the creation of statistics that possess desirable 
properties. Communicating some of the results of ongoing development in the field is 
one motivation for this volume.

2	 Effect sizes and p-values are mathematically related. However, the sample size plays 
a role in the calculation of each, so a small effect can be significant and a large effect 
can be nonsignificant. For this reason, researchers should always report both an exact 
p-value and a measure of effect size.

3	 See Nickerson (2000) for a comprehensive discussion of interpretation fallacies related 
to p-values.

4	 Space considerations allow for the selection of a limited number of nonparametric tests 
and relatively brief treatments. For a more comprehensive overview see Daniel (1990).

5	 Some introductory statistics books and classes also teach the similar z-test, which can be 
used when the standard deviation is known. Since this will almost never be the case, we 
omit a description of this test.

6	 There are a number of different ways to combine the final ranks. Depending on the pro-
cedure, the test statistic is sometimes denoted by W or V. Also, take careful notice that 
this T-statistic does not follow Student’s t-distribution.


